Preeclampsia, a hypertensive pregnancy disorder, links to increased long-term maternal cardiovascular disease (CVD). The risk is further increased with early-onset preeclampsia (EPE) and delivery of a growth-restricted child. We hypothesized that circulating biomarkers associated with CVD risk differed between preeclampsia subtypes and controls. We compared EPE; n=37, delivery <week 34, late-onset preeclampsia (LPE); n=29, delivery ≥week 34, and normotensive controls (n=49) using Olink Proseek multiplex CVD I assay (targeting 92 biomarkers). We stratified analysis to uteroplacental spiral artery acute atherosis presence in preeclampsia patients, sharing morphological similarities with atherosclerosis. We found 47 CVD-related biomarkers differing between the groups, 42 markers between normotensive controls and EPE, 28 markers between normotensive controls and LPE, and 9 markers between EPE and LPE. Among these 9 markers, ST2 (ST2 protein), MMP (matrix metalloproteinase) 1, MMP3, and fractalkine (CX3CL1) were uniquely dysregulated in EPE. Principal component (PC) analysis of the differing markers identified 4 clusters (named PC1–PC4) that largely separated the preeclampsia and control groups as well as pregnancies with low and high circulating PlGF (placental growth factor). The combination of the single markers PlGF, ST2, MMP1, MMP3, and CX3CL1 had a high discriminatory property to differentiate between EPE and LPE. Preeclampsia with acute atherosis or with fetal growth restriction could be differentiated by Olink biomarkers as compared with preeclampsia without these features. We identified specific CVD-related biomarkers in pregnancy depending on preeclampsia subtypes and uteroplacental acute atherosis. Assessment of these pregnancy measured biomarkers’ relation to long-term cardiovascular dysfunction and hard end points is warranted.