halogen species
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Shidong Fan ◽  
Ying Li

Abstract. Relationships between oceanic emissions and air chemistry are intricate and still not fully understood. For regional air chemistry, a better understanding of marine halogen emission on hydroxyl (OH) radical is crucial. OH radical is a key species in atmospheric chemistry because it can oxidize almost all trace species in the atmosphere. In the marine atmosphere, OH level could be significantly affected by the halogen species emitted from the ocean. However, due to the complicated interactions of halogens with OH through different pathways, it is not well understood how halogens influence OH and even great uncertain in the signs of net effect. Therefore, in this study, we aim to quantify the impact of marine-emitted halogens (including Cl, Br, and I) through different pathways on OH in the high OH season by using WRF-CMAQ model with process analysis and state-of-the-art halogen chemistry in the East Asia Seas. Results show a very complicated response of OH production rate (POH) to marine halogen emissions. The monthly POH is generally decreased over the ocean with maxima of about 10–15 % in the Philippine Sea, but is increased in many nearshore areas with maxima of about 7–9 % in the Bohai Sea. In the coastal areas of southern China, the monthly POH could also decrease 3–5 % in the Greater Bay Area, but with a daytime hourly maximum decrease over 30 %. Analysis to the individual reactions using integrated reaction rate (IRR) show that the net change of POH is controlled by the competitions of three main pathways through different halogen species. Sea spray aerosols (SSA) and inorganic iodine gases are the main species to influence the strengths of these three pathways and therefore have the most significant impacts on POH. Both of these two types of species decrease POH through physical processes, while generally increase POH through chemical processes. In the ocean atmosphere, the controlling species are inorganic iodine gases and the complicated iodine chemistry determines the basic pattern of ΔPOH, while over the continent, SSA is the controlling species and the SSA extinction effect leads to the negative ΔPOH in the southern China. Our results indicate that marine-emitted halogen species have notable impacts over the ocean and have potential impact on the coastal atmospheric oxidation. The identified main (previously known or unknown) pathways and their controlling factors from different halogen species to OH radical explains the halogen-induced change of POH East Asia and also can be applied in other circumstances (e.g., different domains, regions, and emission rates).


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5921
Author(s):  
Everaldo F. Krake ◽  
Wolfgang Baumann

A selective transformation of clopidogrel hydrogen sulfate (CLP) by reactive halogen species (HOX) generated from peroxymonosulfate (PMS) and sodium halide (NaX) is described. Other sustainable oxidants as well as different solvents have also been investigated. As result of this study, for each sodium salt the reaction conditions were optimized, and four different degradation products were formed. Three products were halogenated at C-2 on the thiophene ring and have concomitant functional transformation, such as N-oxide in the piperidine group. A halogenated endo-iminium product was also observed. With this condition, a fast preparation of known endo-iminium clopidogrel impurity (new counterion) was reported as well. The progress of the reaction was monitored using nuclear magnetic resonance spectroscopy as an analytical tool and all the products were characterized by 1D-, 2D-NMR and HRMS.


2021 ◽  
Vol 21 (14) ◽  
pp. 11437-11452
Author(s):  
Xiaolong Fan ◽  
Jing Cai ◽  
Chao Yan ◽  
Jian Zhao ◽  
Yishuo Guo ◽  
...  

Abstract. Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, the majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas remain scarce, thus limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured in urban Beijing, China, during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranging from a minimum value at 1 × 108 molecules cm−3 (4 ppt) and 4 × 107 molecules cm−3 (1 ppt) up to 6 × 109 molecules cm−3 (222 ppt) and 1 × 109 molecules cm−3 (37 ppt), respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB and levels of gaseous HNO3. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas–particle partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reactions of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 2 × 104 molecules cm−3 s−1 and 8 × 104 molecules cm−3 s−1, respectively. The production rate of atomic Br (via HBr + OH) is 2–3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. On polluted days, the production rates of atomic Cl and Br are faster than those on clean days. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities and may provide a plausible explanation for the widespread halogen chemistry, which could affect the atmospheric oxidation in China.


2021 ◽  
Author(s):  
Hui Liu ◽  
Xiaojun Qiu ◽  
Xiaomei Zhu ◽  
Bing Sun ◽  
Xiaoxing Zhang

Abstract Organobromine compounds are of great ecological risks due to their high toxicity on organisms. Photochemical halogenation reaction may represent an important natural formation process of natural organobromine compounds in marine environment. Here we reported the enhanced formation of bromophenols from phenol by sunlit anthraquinone-2-sulphonate (AQ2S) and benzophenone (BP) in aqueous bromide solutions. Quinones and aromatic ketones are ubiquitous components of dissolved organic matter (DOM) in surface waters, and AQ2S and BP were adopted here as proxies of DOM. Bromophenols’ formation increased with the increasing of the concentrations of AQ2S and BP, and the promotion effect was in the order AQ2S > BP, indicating that sunlit DOM plays an important role for the formation of reactive bromine species. Chloride was found to promote the formation of bromophenols obviously, suggesting a possible role of the mixed reactive halogen species. Finally, the natural DOM from Suwannee River was found to enhance photobromoination at a low concentration (1 mg L-1) in aqueous bromide solution. Our results demonstrated the importance of reactive halogen species generation from sunlit DOM, which possibly contributes to the abiotic source of organohalogen compounds in marine environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaron L. Rozelle ◽  
Young Cheun ◽  
Caroline K. Vilas ◽  
Myong-Chul Koag ◽  
Seongmin Lee

AbstractOxidative damage to DNA generates 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major lesions. Despite the comparable prevalence of these lesions, the biological effects of oxoA remain poorly characterized. Here we report the discovery of a class of DNA interstrand cross-links (ICLs) involving oxidized nucleobases. Under oxidative conditions, oxoA, but not oxoG, readily reacts with an opposite base to produce ICLs, highlighting a latent alkylating nature of oxoA. Reactive halogen species, one-electron oxidants, and the myeloperoxidase/H2O2/Cl− system induce oxoA ICLs, suggesting that oxoA-mediated cross-links may arise endogenously. Nucleobase analog studies suggest C2-oxoA is covalently linked to N2-guanine and N3-adenine for the oxoA-G and oxoA-A ICLs, respectively. The oxoA ICLs presumably form via the oxidative activation of oxoA followed by the nucleophilic attack by an opposite base. Our findings provide insights into oxoA-mediated mutagenesis and contribute towards investigations of oxidative stress-induced ICLs and oxoA-based latent alkylating agents.


2021 ◽  
Author(s):  
Qinyi Li ◽  
Alba Badia ◽  
Rafael P. Fernandez ◽  
Anoop S. Mahajan ◽  
Ana Isabel López-Noreña ◽  
...  

<p>Ocean-going ships supply products from one region to another and contribute to the world’s economy. Ship exhaust contains many air pollutants and results in significant changes in marine atmospheric composition. The role of Reactive Halogen Species (RHS) in the troposphere has received increasing recognition and oceans are the largest contributors to their atmospheric burden. However, the impact of shipping emissions on RHS and that of RHS on ship-originated air pollutants have not been studied in detail. Here, an updated WRF-Chem model is utilized to explore the chemical interactions between ship emissions and oceanic RHS over the East Asia seas in summer. The emissions and resulting chemical transformations from shipping activities increase the level of NO and NO<sub>2</sub> at the surface, increase O<sub>3</sub> in the South China Sea, but decrease O<sub>3</sub> in the East China Sea. Such changes in pollutants result in remarkable changes in the levels of RHS as well as in their partitioning. The abundant RHS, in turn, reshape the loadings of air pollutants and those of the oxidants with marked patterns along the ship tracks. We, therefore, suggest that these important chemical interactions of ship-originated emissions with RHS should be considered in the environmental policy assessments of the role of shipping emissions in air quality and climate.</p>


2021 ◽  
Author(s):  
Herizo Narivelo ◽  
Virginie Marécal ◽  
Paul David Hamer ◽  
Luke Surl ◽  
Tjarda Roberts ◽  
...  

<p><span>Volcanoes emit different gaseous species, SO₂ and in particular halogen species especially bromine and chlorine compounds. In general, halogens play an important role in the atmosphere by contributing to ozone depletion in the stratosphere (WMO Ozone assessment, 2018) and by modifying air composition and oxidizing capacity in the troposphere (Von Glasow et al. 2004). The halogen species emitted by volcanoes are halides. The chemical processing occurring within the plume leads to the formation of BrO from HBr following the ‘bromine explosion’ mechanism as evidenced from both observations and modelling (e.g., Bobrowski et al. Nature, 2003; Roberts et al., Chem. Geol. 2009). Oxidized forms of chlorine and bromine are modelled to be formed within the plume due to the heterogenous reaction of HOBr with HCl and HBr, forming BrCl and Br₂ that photolyses and produces Br and Cl radicals. So far, modelling studies were mainly focused on the very local scale and processes occurring within a few hours after eruption.</span></p><p><span>In this study, the objective is to go a step further by analyzing the impact at the regional scale over the Mediterranean basin of a Mt Etna eruption event. For this, we use the MOCAGE model (Guth et al., GMD, 2016), a chemistry transport model run with a resolution of 0.2°x 0.2°, to quantify the impacts of the halogens species emitted by the volcano on the tropospheric composition. We have selected here the case of the eruption of Mount Etna around Christmas 2018 characterised by large amounts of emissions over several days (Calvari et al., remote sensing 2020; Corrdadini et al., remote sensing 2020). The results show that MOCAGE represents rather well the chemistry of the halogens in the volcanic plume because it established theory of plume chemistry. The bromine explosion process takes place on the first day of the eruption and even more strongly the day after, with a rapid increase of the in-plume BrO concentrations and a corresponding strong reduction of ozone and NO2 concentrations.</span></p><p><span>We also compared MOCAGE results with the WRF-CHEM model simulations for the same case study. We note that the tropospheric column of BrO and SO₂ in the two models have the same order of magnitude with more rapid bromine explosion occurring in WRF-CHEM simulations. Finally, we compared the MOCAGE results to tropospheric columns of BrO and SO</span><sub><span>2</span></sub><span> retrieved from TROPOMI spaceborne instrument.</span></p>


2021 ◽  
Author(s):  
Lei Yao ◽  
Xiaolong Fan ◽  
Jing Cai ◽  
Chao Yan ◽  
Biwu Chu ◽  
...  

<p>Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas (especially megacities) remain scarce, thus, limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured by Chemical Ionization-Atmospheric Pressure interface-Long Time Of Flight-Mass Spectrometer (CI-APi-LTOF-MS) in urban Beijing, China at the BUCT station (39.94° N, 116.30° E) during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranged from a minimum value at 1.3×10<sup>8</sup> cm<sup>-3</sup> and 4.3×10<sup>7</sup> cm<sup>-3 </sup>up to 5.9×10<sup>9</sup> cm<sup>-3</sup> and 1.2×10<sup>9</sup> cm<sup>-3</sup>, respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB, and levels of gaseous HNO<sub>3</sub>. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), the gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas-aerosol partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reaction of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 1.7×10<sup>4 </sup>cm<sup>-3 </sup>s<sup>-1</sup>and 7.9×10<sup>4 </sup>cm<sup>-3 </sup>s<sup>-1</sup>, respectively. The production rate of atomic Br (via HBr + OH) are 2-3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities, and may provide a plausible explanation for the widespread of halogen chemistry, which could affect the atmospheric oxidation in China.</p>


2021 ◽  
Author(s):  
Gibu George ◽  
Anton J Stasyuk ◽  
Miquel Solà

The Diels-Alder cycloaddition reaction between 1,3-cyclohexadiene and a series of C60 fullerenes with encapsulated (super)alkali/(super)halogen species (Li+@C60, Li2F+@C60, Cl-@C60, and LiF2-@C60) was explored by means of DFT calculations. Reactivity of...


2021 ◽  
Author(s):  
Khanghyun Lee ◽  
Andrea Spolaor ◽  
Jisoo Park ◽  
Songyi Kim ◽  
Sang-Bum Hong

Sign in / Sign up

Export Citation Format

Share Document