chromosome fusions
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 15 (10) ◽  
pp. e0009838
Author(s):  
John Mattick ◽  
Silvia Libro ◽  
Robin Bromley ◽  
Wanpen Chaicumpa ◽  
Matthew Chung ◽  
...  

The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2650
Author(s):  
Rafael Kretschmer ◽  
Ismael Franz ◽  
Marcelo Santos de Souza ◽  
Analía Del Valle Garnero ◽  
Ricardo José Gunski ◽  
...  

The phylogenetic position and taxonomic status of Rhynchocyclidae (Aves: Passeriformes) have been the subject of debate since their first description. In most models, Rhynchocyclidae represents a subfamily-level taxon placed within the Tyrant Flycatchers (Tyrannidae). Considering that this classification does not include cytotaxonomic characters, we tested the hypothesis that the chromosome organization of Rhynchocyclidae members differs from that of Tyrannidae. Hence, we selected two species, Tolmomyias sulphurescens, and Pitangus sulphuratus, representing Rhynchocyclidae and Tyrannidae, respectively. Results revealed a diploid number (2n) of 60 in T. sulphurescens and 2n = 80 in P. sulphuratus, indicating significant chromosomal differences. Chromosome mapping of Gallus gallus (GGA) and Taeniopygia guttata bacterial artificial chromosome (BAC) corresponding to chromosomes GGA1-28 (except 16) revealed that the genome evolution of T. sulphurescens involved extensive chromosome fusions of macrochromosomes and microchromosomes. On the other hand, P. sulphuratus retained the ancestral pattern of organization of macrochromosomes (except the centric fission involving GGA1) and microchromosomes. In conclusion, comparing our results with previous studies in Tyrant Flycatchers and allies indicates that P. sulphuratus has similar karyotypes to other Tyrannidae members. However, T. sulphurescens does not resemble the Tyrannidae family, reinforcing family status to the clade named Rhynchocyclidae.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009743
Author(s):  
Klaas Schotanus ◽  
Vikas Yadav ◽  
Joseph Heitman

Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200099
Author(s):  
Artem P. Lisachov ◽  
Katerina V. Tishakova ◽  
Svetlana A. Romanenko ◽  
Anna S. Molodtseva ◽  
Dmitry Yu. Prokopov ◽  
...  

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus , an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2 n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus . Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome–autosome fusions and the evolution of recombination rate. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


Author(s):  
Stephanie M. Ackerson ◽  
Carlan Romney ◽  
P. Logan Schuck ◽  
Jason A. Stewart

The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.


2021 ◽  
Author(s):  
Francesco Cicconardi ◽  
James J Lewis ◽  
Simon Henry Martin ◽  
Robert D. Reed ◽  
Charles G Danko ◽  
...  

Major changes in chromosome number and structure are linked to a series of evolutionary phenomena, including intrinsic barriers to gene flow or suppression of recombination due to chromosomal rearrangements. However, chromosome rearrangements can also affect the fundamental dynamics of molecular evolution within populations by changing relationships between linked loci and altering rates of recombination. Here, we build chromosome-level assembly Eueides isabella and, together with the chromosome-level assembly of Dryas iulia, examine the evolutionary consequences of multiple chromosome fusions in Heliconius butterflies. These assemblies pinpoint fusion points on 10 of the 21 autosomal chromosomes and reveal striking differences in the characteristics of fused and unfused chromosomes. The ten smallest autosomes in D. iulia and E. isabella, which have each fused to a longer chromosome in Heliconius, have higher repeat and GC content, and longer introns than predicted by their chromosome length. Following fusion, these characteristics change to become more in line with chromosome length. The fusions also led to reduced diversity, which likely reflects increased background selection and selection against introgression between diverging populations, following a reduction in per-base recombination rate. We further show that chromosome size and fusion impact turnover rates of functional loci at a macroevolutionary scale. Together these results provide further evidence that chromosome fusion in Heliconius likely had dramatic effects on population level processes shaping rates of neutral and adaptive divergence. These effects may have impacted patterns of diversification in Heliconius, a classic example of an adaptive radiation.


2020 ◽  
Author(s):  
Klaas Schotanus ◽  
Vikas Yadav ◽  
Joseph Heitman

AbstractDeletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres span actively expressed genes. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is silenced and the native centromere of the chromosome fusion partner remains as the sole active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted re-activation of a silenced neocentromere. Our results show that the silenced neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To explore the epigenetic organization of neocentromeres, we characterized the distribution of the heterochromatic histone modification H3K9me2 and 5mC DNA methylation. Native centromeres were enriched for both H3K9me2 and 5mC DNA methylation marks, while neocentromeres lacked these specific histone and DNA modifications. To study centromere dynamics, the actively expressed URA5 gene was introduced into a native centromere. Introduction of the URA5 gene led to loss of CENP-A from the native centromere, and a neocentromere formed directly adjacent to the native centromere location. Remarkably, the silenced native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. Analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unknown phenomenon in fungi. The CENP-A-enriched region shifted within the pericentric regions, and a truncated transposable element in centromere 5 acted as a barrier between the CENP-A-associated regions of chromatin. Interestingly, this truncated transposable element was devoid of CENP-A binding or H3K9me2 modification and was instead marked by 5mC DNA methylation. Taken together, our findings reveal novel aspects about the epigenetic mechanisms that distinguish native centromeres and neocentromeres.


2020 ◽  
Vol 3 (12) ◽  
pp. e202000911
Author(s):  
Katsushi Kagaya ◽  
Naoto Noma-Takayasu ◽  
Io Yamamoto ◽  
Sanki Tashiro ◽  
Fuyuki Ishikawa ◽  
...  

Chromosome fusion is a frequent intermediate in oncogenic chromosome rearrangements and has been proposed to cause multiple tumor-driving abnormalities. In conventional experimental systems, however, these abnormalities were often induced by randomly induced chromosome fusions involving multiple different chromosomes. It was therefore not well understood whether a single defined type of chromosome fusion, which is reminiscent of a sporadic fusion in tumor cells, has the potential to cause chromosome instabilities. Here, we developed a human cell-based sister chromatid fusion visualization system (FuVis), in which a single defined sister chromatid fusion is induced by CRISPR/Cas9 concomitantly with mCitrine expression. The fused chromosome subsequently developed extra-acentric chromosomes, including chromosome scattering, indicative of chromothripsis. Live-cell imaging and statistical modeling indicated that sister chromatid fusion generated micronuclei (MN) in the first few cell cycles and that cells with MN tend to display cell cycle abnormalities. The powerful FuVis system thus demonstrates that even a single sporadic sister chromatid fusion can induce chromosome instability and destabilize the cell cycle through MN formation.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhikang Zhang ◽  
Fanbo Meng ◽  
Pengchuan Sun ◽  
Jiaqing Yuan ◽  
Ke Gong ◽  
...  

Abstract Background Belonging to lineage I of Brassicaceae, Camelina sativa is formed by two hybridizations of three species (three sub-genomes). The three sub-genomes were diverged from a common ancestor, likely derived from lineage I (Ancestral Crucifer karyotype, ACK). The karyotype evolutionary trajectories of the C. sativa chromosomes are currently unknown. Here, we managed to adopt a telomere-centric theory proposed previously to explain the karyotype evolution in C. sativa. Results By characterizing the homology between A. lyrata and C. sativa chromosomes, we inferred ancestral diploid karyotype of C. sativa (ADK), including 7 ancestral chromosomes, and reconstructed the evolutionary trajectories leading to the formation of extant C. sativa genome. The process involved 2 chromosome fusions. We found that sub-genomes Cs-G1 and Cs-G2 may share a closer common ancestor than Cs-G3. Together with other lines of evidence from Arabidopsis, we propose that the Brassicaceae plants, even the eudicots, follow a chromosome fusion mechanism favoring end-end joining of different chromosomes, rather than a mechanism favoring the formation circular chromosomes and nested chromosome fusion preferred by the monocots. Conclusions The present work will contribute to understanding the formation of C. sativa chromosomes, providing insight into Brassicaceae karyotype evolution.


2020 ◽  
Author(s):  
Zhikang Zhang ◽  
Fanbo Meng ◽  
Pengchuan Sun ◽  
Jiaqing Yuan ◽  
Ke Ge ◽  
...  

Abstract Background: Belonging to lineage Ⅰ of Brassicaceae, Camelina sativa is formed by two hybridizations of three species (three sub-genomes). The three sub-genomes were diverged from a common ancestor, likely derived from lineage Ⅰ (Ancestral Crucifer karyotype, ACK). The karyotype evolutionary trajectories of the C. sativa chromosomes are currently unknown. Here, we managed to adopt a telomere-centric theory proposed previously to explain the karyotype evolution in C. sativa. Results: By characterizing the homology between A. lyrata and C. sativa chromosomes, we inferred ancestral diploid karyotype of C. sativa (ADK), including 7 ancestral chromosomes, and reconstructed the evolutionary trajectories leading to the formation of extant C. sativa genome. The process involved 2 chromosome fusions. We found that sub-genomes Cs-G1 and Cs-G2 may share a closer common ancestor than Cs-G3. Together with other lines of evidence from Arabidopsis, we propose that the Brassicaceae plants, even the eudicots, follow a chromosome fusion mechanism favoring end-end joining of different chromosomes, rather than a mechanism favoring the formation circular chromosomes and nested chromosome fusion preferred by the monocots. Conclusions: The present work will contribute to understanding the formation of C. sativa chromosomes, providing insight into Brassicaceae karyotype evolution.


Sign in / Sign up

Export Citation Format

Share Document