signal activation
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 35)

H-INDEX

32
(FIVE YEARS 2)

Author(s):  
Ran Tao ◽  
Zhan Qu ◽  
Ke Zhang ◽  
Jie Chen ◽  
Xinyu Wang ◽  
...  

2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


2021 ◽  
Author(s):  
Keisuke Ikegami ◽  
Satoru Masubuchi

Abstract Intraocular pressure (IOP) is important in glaucoma development and depends on aqueous humor (AH) dynamics, involving inflow from the ciliary body and outflow through the trabecular meshwork (TM). IOP has a circadian rhythm entrained by sympathetic noradrenaline (NE) or adrenal glucocorticoids (GCs). Here, we investigated the involvement of GC and NE in AH outflow. Pharmacological prevention of inflow/outflow in mice indicated an AH outflow increase during day. Although TM phagocytosis can determine AH drainage, only NE showed a non-self-sustained inhibitory effect in phagocytosis of immortalized human TM cells. Pharmacological approach and RNA interference identified β1-adrenergic receptor (AR)-mediated cAMP-EPAC-SHIP1 signal activation by ablation of phosphatidylinositol triphosphate regulating phagocytic cup formation. Furthermore, pharmacological instillation in mice revealed the role of β1-AR-EPAC-SHIP1 pathway in nocturnal IOP rise. These suggest that IOP rhythm is partially regulated by this pathway. This first demonstration of TM phagocytosis suppression by NE could be useful in glaucoma management.


2021 ◽  
Author(s):  
Mahan Si ◽  
Yujia Song ◽  
Xiaohui Wang ◽  
Dong Wang ◽  
Xiaohui Liu ◽  
...  

Abstract Background: CXCR7 is an atypical chemokine receptor that transmits biased signal independent of G-protein activation. However, whether CXCL12/CXCR7 biased signal activation plays an essential role in colorectal cancer (CRC) progression and metastasis remains obscure. Methods: The functional role of CXCL12/CXCR7 biased signal in CRC was investigated by RNA-sequencing, Transwell assay and in vivo tumor xenografts. YAP1 nuclear translocation and molecular mechanisms were determined by cell transfection, luciferase activity assay, immunofluorescence, coimmunoprecipitation and immunohistochemistry and RT-qPCR analysis.Results: In this study, CXCR7 CXCL12/overexpression promotes Epithelial-to-mesenchymal transition (EMT) and upregulates the expression of stem marker doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p. Further luciferase assay prove that these miRNAs could regulate EMT by direct targeting vimentin and DCLK1. More importantly, CXCL12/CXCR7/β-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoter of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 recapitulates the anti-tumorigenesis and anti-metastasis effects of YAP1 depletion upon CXCR7 activation in tumor xenografts. Clinically, the expression of CXCR7 was positively correlated with nuclear YAP1 levels and EMT markers. Conclusions: Our findings revealed the novel role of YAP1 nuclear translocation in promoting EMT of CRC by repressing miR-124-3p and miR-188-5p through CXCL12/CXCR7/β-arrestin1 biased signal activation. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of CRC.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yucheng Zhou ◽  
Zhaoyang Bu ◽  
Jing Qian ◽  
Yuening Cheng ◽  
Lianjiang Qiao ◽  
...  

Abstract Background UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. Results In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase−). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase−-infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase−-infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. Conclusions The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.


Small ◽  
2021 ◽  
pp. 2101678
Author(s):  
Ricarda M. L. Berger ◽  
Johann M. Weck ◽  
Simon M. Kempe ◽  
Oliver Hill ◽  
Tim Liedl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document