borehole heat exchangers
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 88)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Kaiu Piipponen ◽  
Annu Martinkauppi ◽  
Sami Vallin ◽  
Teppo Arola ◽  
Nina Leppäharju ◽  
...  

Abstract The energy sector is undergoing a fundamental transformation, with significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface area to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers of depths ranging from 600-3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7407
Author(s):  
Marco Belliardi ◽  
Nerio Cereghetti ◽  
Paola Caputo ◽  
Simone Ferrari

Geothermal heat is an increasingly adopted source for satisfying all thermal purposes in buildings by reversible heat pumps (HP). However, for residential buildings located in moderate climates, geocooling, that implies the use of geothermal source for cooling buildings without the operation of HP, is an efficient alternative for space cooling not yet explored enough. Geocooling allows two main benefits: to cool the buildings by high energy efficiencies improving summer comfort; to recharge the ground if space heating is provided by HP exploiting the geothermal source (GSHP). In these cases, geocooling allows to avoid the decreasing of the performances of the GSHP for space heating over the years. To explore these issues, a method has been developed and tested on a real case: a new residential building in Lugano (southern Switzerland) coupled with 13 borehole heat exchangers. The system provides space heating in winter by a GSHP and space cooling in summer by geocooling. During a 40 months monitoring campaign, data such as temperatures, heat flows and electricity consumptions were recorded to calibrate the model and verify the benefits of such configuration. Focusing on summer operation, the efficiency of the system, after the improvements implemented, is above 30, confirming, at least in similar contexts, the feasibility of geocooling. Achieved results provides knowledge for future installations, underlining the replication potential and the possible limits.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012094
Author(s):  
David Sauter ◽  
Manuel Hunziker ◽  
Joachim Poppei ◽  
Fabien Cochand ◽  
Markus Hubbuch ◽  
...  

Abstract To prevent undercooling of the ground in densely populated areas, regeneration of borehole heat exchangers (BHEs), for example by solar thermal heat, may become necessary. However, the usable roof area is often small compared to the building’s heat demand, especially in urban areas. It was investigated how much regeneration is possible in districts that are supplied entirely by heat pumps with BHEs. Example buildings were modelled based on the buildings of two districts in Zurich. Uncovered PVT collectors and glazed flat-plate collectors were used as regeneration sources. The possible regeneration was determined in a simulation process that included the effects of mutual influences between the BHEs of neighbouring buildings. As expected, glazed flat-plate collectors allow for more regeneration than uncovered PVT collectors. For full regeneration, the required usable roof area relative to the annual heat demand is about 1.8m2/MWh for PVT and 1.2m2/MWh for flat-plate collectors. Large buildings often do not provide sufficient roof area for full regeneration. A sustainable heat supply of the entire district with regenerated BHEs can be possible in suburban neighbourhoods, if the bigger buildings are distributed rather evenly. In urban neighbourhoods, areas may exist in which solar thermal regeneration alone is not sufficient.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012100
Author(s):  
A Jahanbin ◽  
G Semprini ◽  
B Pulvirenti

Abstract The borehole heat exchanger (BHE) is a critical component to improve energy efficiency and decreasing environmental impact of ground-source heat pump systems. The lower thermal resistance of the BHE results in the better thermal performance and/or in the lower required borehole length. In the present study, effects of employing a nanofluid suspension as a heat carrier fluid on the borehole thermal resistance are examined. A 3D transient finite element code is adopted to evaluate thermal comportment of nanofluids with various concentrations in single U-tube borehole heat exchangers and to compare their performance with the conventional circuit fluid. The results show, in presence of nanoparticles, the borehole thermal resistance is reduced to some extent and the BHE renders a better thermal performance. It is also revealed that employing nanoparticle fractions between 0.5% and 2 % are advantageous in order to have an optimal decrement percentage of the thermal resistance.


Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102220
Author(s):  
Wenke Zhang ◽  
Wenjing Li ◽  
Bjørn R Sørensen ◽  
Ping Cui ◽  
Yi Man ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document