response amplitude
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 45)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
pp. 51936
Author(s):  
Anupama Sargur Ranganath ◽  
Suganya Vellingiri ◽  
Hong Yee Low

2021 ◽  
Vol 929 ◽  
Author(s):  
Methma M. Rajamuni ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Vortex-induced vibration (VIV) of an elastically mounted sphere placed close to or piercing a free surface (FS) was investigated numerically. The submergence depth ( $h$ ) was systematically varied between $1$ and $-$ 0.75 sphere diameters ( $D$ ) and the response simulated over the reduced velocity range $U^*\in [3.5,14]$ . The incompressible flow was coupled with the sphere motion modelled by a spring–mass–damper system, treating the free-surface boundary as a slip wall. In line with the previous experimental findings, as the submergence depth was decreased from $h^* = h/D =1$ , the maximum response amplitude of the fully submerged sphere decreased; however, as the sphere pierced the FS, the amplitude increased until $h^* = -0.375$ , and then decreased beyond that point. The fluctuating components of the lift and drag coefficients also followed the same pattern. The variation of the near-wake vortex dynamics over this submergence range was examined in detail to understand the effects of $h^*$ on the VIV response. It was found that $h^* = 1$ is a critical submergence depth, beyond which, as $h^*$ is decreased, the vortical structures in the wake vary significantly. For a fully submerged sphere, the influence of the stress-free condition on the VIV response was dominant over the kinematic constraint preventing flow through the surface. For piercing sphere cases, two previously unseen vortical recirculations were formed behind the sphere near times of maximal displacement, enhancing the VIV response. These were strongest at $h^* = -0.375$ , and much weaker for small submergence depths, explaining the observed response-amplitude variation.


2021 ◽  
Author(s):  
Margarita S Komarova ◽  
Andrey R Bukharev ◽  
Natalia N Potapieva ◽  
Denis B Tikhonov

Abstract Among the proton-activated channels of the ASIC family, ASIC1a exhibits a specific tachyphylaxis phenomenon in the form of a progressive decrease in the response amplitude during a series of activations. This process is well known, but its mechanism is poorly understood. Here, we demonstrated a partial reversibility of this effect by long-term whole-cell recording of CHO cells transfected with rASIC1a cDNA. Long but infrequent acidifications provided the same recovery time course as short acidifications of the same frequency. Steady-state desensitization is not related to the slow desensitization and attenuates the development of the slow desensitization. Consequently, we found that drugs, which facilitate ASIC1a activation (e.g., amitriptyline), cause an enhancement of slow desensitization, while inhibition of ASIC1a by 9-aminoacridine attenuates the slow desensitization. In summary, for influences of vastly different origin, including increase of calcium concentration, different pH conditions, and action of modulating drugs, we found a correlation between the effect on response amplitude and on development of slow desensitization. Thus, our results prove that a slow desensitization requires the open ion-permeable state.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xiaohui Liu ◽  
Haobo Liang ◽  
Guangyun Min ◽  
Chuan Wu ◽  
Mengqi Cai

Aiming at the problem of nonlinear vibration of current-carrying iced conductors, the aerodynamic forces are introduced into the previous vibration equation of current-carrying conductors that only considered Ampere’s forces. At the same time, on this basis, a forced excitation load is further introduced to study the influence of dynamic wind on the nonlinear vibration characteristics of current-carrying iced conductors, and a new current-carrying iced conductors system under the combined action of Ampere’s forces, forced excitation, and aerodynamic forces has been established, and the improved theoretical modeling of current-carrying iced transmission lines made the model more in line with practical engineering. Firstly, the model of current-carrying iced conductors was established, and then the vibration equation of the model was derived. And the vibration equation was transformed into a finite dimensional ordinary differential equation by using the Galerkin method. The amplitude-frequency response functions of the nonlinear forced primary resonances and super-harmonic and subharmonic resonances of the system are derived by using the multiscale method. Through numerical calculation, the influence of current-carrying, spacing, wind velocity, tension, and excitation amplitude on the response amplitude when the primary resonance of the system appears is analyzed, and the difference between the two working conditions (considering the aerodynamic forces and without considering aerodynamic forces) is compared. The influence of the variation of current-carrying i on the response amplitude of super-harmonic and subharmonic resonances and the stability of the steady-state solution of forced primary resonance was analyzed. The results show that the response amplitude and the nonlinearilty of system under the action of aerodynamic forces are smaller and weaker than without the action of aerodynamic forces; the variation of line parameters has a certain influence on the response amplitude of conductor and the nonlinearity of system; the response amplitudes of the primary resonance, super-harmonic resonance, and subharmonic resonance increase with the increase in the excitation amplitudes, and the resonance peak is offset towards the negative value of the tuning parameter σ, showing the characteristics of soft spring, and the response amplitudes are accompanied by complex nonlinear dynamic behaviors such as the multivalue and jump phenomenon. The change of current-carrying i has an obvious effect on the nonlinearity of the system. The nonlinear and response amplitudes of the system are also enhanced with the increase in wind velocity. The stability of the system is judged when the primary resonance occurs, and it is found that the response amplitude shows synchronization and the out-of-step phenomenon with the change of tuning parameters. The research results obtained in this paper would help to further improve the theoretical modeling about current-carrying iced lines, and the research of line parameters can give a certain reference value to practical engineering, and it will have a positive effect on the safe operation of high-voltage transmission lines.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shuai Zhou ◽  
Yunfeng Zou ◽  
Xugang Hua ◽  
Fanrong Xue ◽  
Xuandong Lu

When the critical wind speed of vortex-induced resonance is close to that of quasi-steady galloping, a type of coupled wind-induced vibration that is different from divergent galloping can easily occur in a rectangular bar. It is a type of “unsteady galloping” phenomenon wherein the response amplitude increases linearly with the increase in the wind speed, while a limit cycle oscillation is observed at each wind speed, whose mechanism is still in research. Mass and damping are the key parameters that affect the coupling degree and amplitude response estimation. For a set of rectangular section member models with a width-to-height ratio of 1.2, by adjusting the equivalent stiffness, equivalent mass, and damping ratio of the model system and performing comparative tests on the wind-induced vibration response of the same mass with different damping ratios, it is possible to achieve the same damping ratio with different masses and the same Scruton number with different masses and damping combinations under the same Reynolds number. The results show that the influence of the mass and damping parameters on the “unsteady galloping” amplitude response is independent, and the weight is the same in the coupling state. The Scruton number “locked interval” (12.4–30.6) can be found in the “unsteady galloping” amplitude response, and the linear slope of the dimensionless wind speed amplitude response curve does not change with the Scruton number in the “locked interval.” In addition, a “transition interval” (26.8–30.6) coexists with the “locked interval” wherein the coupling state of the wind-induced vibration is converted into the uncoupled state. The empirical formula for estimating the “unsteady galloping” response amplitude is modified and can be used to predict the amplitude within the design wind speed range of similar engineering members.


2021 ◽  
Author(s):  
Beatriz Eymi Pimentel Mizusaki ◽  
Sally Si Ying Li ◽  
Rui Ponte Costa ◽  
Jesper Sjöström

A plethora of experimental studies have shown that long-term synaptic plasticity can be expressed pre- or postsynaptically depending on a range of factors such as developmental stage, synapse type, and activity patterns. The functional consequences of this diversity are not clear, although it is understood that whereas postsynaptic expression of plasticity predominantly affects synaptic response amplitude, presynaptic expression alters both synaptic response amplitude and short-term dynamics. In most models of neuronal learning, long-term synaptic plasticity is implemented as changes in connective weights. The consideration of long-term plasticity as a fixed change in amplitude corresponds more closely to post- than to presynaptic expression, which means theoretical outcomes based on this choice of implementation may have a postsynaptic bias. To explore the functional implications of the diversity of expression of long-term synaptic plasticity, we adapted a model of long-term plasticity, more specifically spike-timing-dependent plasticity (STDP), such that it was expressed either independently pre- or postsynaptically, or in a mixture of both ways. We compared pair-based standard STDP models and a biologically tuned triplet STDP model, and investigated the outcomes in a minimal setting, using two different learning schemes: in the first, inputs were triggered at different latencies, and in the second a subset of inputs were temporally correlated. We found that presynaptic changes adjusted the speed of learning, while postsynaptic expression was more efficient at regulating spike timing and frequency. When combining both expression loci, postsynaptic changes amplified the response range, while presynaptic plasticity allowed control over postsynaptic firing rates, potentially providing a form of activity homeostasis. Our findings highlight how the seemingly innocuous choice of implementing synaptic plasticity by single weight modification may unwittingly introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and postsynaptically expressed plasticity are not interchangeable, but enable complimentary functions.


2021 ◽  
Vol 13 (3) ◽  
pp. 797-807
Author(s):  
B. Bhuvaneshwari ◽  
S. V. Priyatharsini ◽  
V. Chinnathambi ◽  
S. Rajasekar

We consider a harmonically trapped potential system driven by modulated signals with two widely different frequencies ω and Ω, where Ω >> ω. The forms of modulated signals are amplitude modulated (AM) and frequency-modulated (FM) signals. An amplitude-modulated external signal is consisting of a low-frequency (ω) component and two high-frequencies (Ω + ω) and (Ω − ω) whereas the frequency modulated signal consisting of the frequency components such as f sinωt cos(g cosΩt) and f sin(g cosΩt) cosωt. Depending upon the values of the parameters in the potential function, an odd number of potential wells of different depths can be generated. We numerically investigate the effect of these modulated signals on vibrational resonance (VR) in single-well, three-well, five-well and seven-well potentials. Different from traditional VR theory in the present paper, the enhancement of VR is made by the amplitudes of the AM and FM signals. We show the enhanced response amplitude (Q) at the low-frequency ω, showing the greater number of resonance peaks and non-decay response amplitude on the response amplitude curve due to the modulated signals in all the potential wells. Furthermore, the response amplitude of the system driven by the AM signal exhibits hysteresis and a jump phenomenon. Such behavior of Q is not observed in the system driven by the FM signal.


2021 ◽  
pp. 1-12
Author(s):  
Mohammad Reza Tabeshpour ◽  
Latif Nikmehr

Response amplitude mitigation of the offshore structures like tension leg platform (TLP) is important since these structures are always exposed to environmental loads such as waves, and in the case of TLP, reduction in response amplitude of platform causes reduction in stress range in tendons; this would increase the fatigue life of tendons, and therefore, increases the structural safety. Also providing stable conditions for machinery and crew increases the efficiency and functionality of the platform. This article thus aims to investigate the possibility and effectiveness of applying tuned mass damper (TMD) as a passive structural control system to suppress the surge motion of TLP that is exposed to wave load. Both numerical and experimental studies were carried out to assess the performance of the TMD. A close agreement is obtained between the numerical simulations and experimental results. The results of numerical and experimental investigations in this study indicate that applying the TMD, tuned to the surge natural frequency of the platform or frequencies close to the surge natural frequency of the platform, doesn’t have efficiency in reducing the surge responses of TLP in the range of probable waves in seas and oceans.


Author(s):  
Mais Ghassoun ◽  
Ali Algharrash ◽  
Reem Alsehnawi

The Dynamic characteristics such as damping ratio and natural frequency are an important indicator for predicting the dynamic behavior of bridges, but it is customary during the design that the designer assess the dynamic properties of the dynamic analysis because it is very difficult to determine the damping of the origin before construction and damping is taken as a predetermined constant value independent of the response amplitude and frequency of the structure. In the dynamic analysis of constructions design some experimental research has been concerned with the determination of dynamic structural properties and their relationship with the response amplitude experimentally, but the changes in dynamic properties with vibration amplitude has never been taken During dynamic analysis, further analytical treatments and computer modeling were required to study different cases based on the experimental results available by simulating them with a computer model. Dynamic characteristics are very essential to accurately determine the dynamic response, and it is necessary to study the effect of changes of the actual dynamic characteristics of bridges, which were determined by measuring their vibration in the results of dynamic analysis and comparing them with results that do not take into account the changes of dynamic properties and with laboratory results in order to assess the role of. Dynamic analysis inputs in simulating vibrations by monitoring their responses. As a result, it was found that the dynamic properties are independent of the shape of the external exactions. Also, it was concluded that relationships express the change of dynamic properties in terms of vibration amplitudes. And Similar reliance of the dynamic characteristics to the vibration amplitude is confirmed for the pier model, where the increase of the amplitude of the acceleration is accompanied by a decrease in the natural frequency, and an increase in the damping ratio is obvious. Before choosing design values when considering the dynamic characteristics of a structure, we need to give unique concentration to the predictable vibration amplitudes. Dynamic characteristics changes during dynamic analysis should be considered to produce analytical results that simulate experimental results and are closer to reality.


2021 ◽  
Author(s):  
Leixin Ma ◽  
Themistocles L. Resvanis ◽  
J. Kim Vandiver

Abstract Practical engineering prediction models for flow-induced vibration are needed in the design of structures in the ocean. Research has shown that structural vibration response may be influenced by a large number of physical input parameters, such as damping and Reynolds number. Practical response prediction tools used in design are inevitably a compromise between complexity and simplicity of use. Modern machine learning tools may be used to identify which input parameters are most important. Standard machine learning techniques enable the researcher to compile a list of the most important input parameters, ranked or ordered by the effect of each on the prediction error of the model. When all inputs are treated as equals, blind application of machine learning may lead to predictions that are inconsistent with prior physical knowledge. To address this problem, we conducted a parameter selection process using a prior knowledge-based, trend-informed neural network architecture. This approach was used to identify features important to the prediction of the cross-flow vibration response amplitude of long flexible cylinders, given the known prior effect of Reynolds number and damping. The model balances the usual goal of minimizing the model prediction error, but doing so in a manner that closely follows the extensive knowledge we have of the influence of Reynolds number and damping parameter on response. The resulting neural network model was able to reveal additional insights, including the role of mode number shifting, mode dominance and travelling waves in the regulation of VIV response amplitude.


Sign in / Sign up

Export Citation Format

Share Document