olfactory stimulus
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Luis Alonso Hernandez-Nunez ◽  
Aravinthan Samuel

Animals use their olfactory systems to avoid predators, forage for food, and identify mates. Olfactory systems detect and distinguish odors by responding to the concentration, temporal dynamics, and identities of odorant molecules. Studying the temporal neural processing of odors carried in air has been difficult because of the inherent challenge in precisely controlling odorized airflows over time. Odorized airflows interact with surfaces and other air currents, leading to a complex transformation from the odorized airflow that is desired to the olfactory stimulus that is delivered. Here, we present a method that achieves precise and automated control of the amplitude, baseline, and temporal structure of olfactory stimuli. We use this technique to analyze the temporal processing of olfactory stimuli in the early olfactory circuits and navigational behavior of larval Drosophila. Precise odor control and calcium measurements in the axon terminal of an Olfactory Receptor Neuron (ORN-Or42b) revealed dynamic adaptation properties: as in vertebrate photoreceptor neurons, Or42b-ORNs display simultaneous gain-suppression and speedup of their neural response. Furthermore, we found that ORN sensitivity to changes in odor concentration decreases with odor background, but the sensitivity to odor contrast is invariant -- this causes odor-evoked ORN activity to follow the Weber-Fechner Law. Using precise olfactory stimulus control with freely-moving animals, we uncovered correlations between the temporal dynamics of larval navigation motor programs and the neural response dynamics of second-order olfactory neurons. The correspondence between neural and behavioral dynamics highlights the potential of precise odor temporal dynamics control in dissecting the sensorimotor circuits for olfactory behaviors.


2021 ◽  
Vol 22 (9) ◽  
pp. 4295
Author(s):  
Lorenzo Zallocco ◽  
Laura Giusti ◽  
Maurizio Ronci ◽  
Andrea Mussini ◽  
Marco Trerotola ◽  
...  

The autonomic nervous system (ANS) plays a crucial role both in acute and chronic psychological stress eliciting changes in many local and systemic physiological and biochemical processes. Salivary secretion is also regulated by ANS. In this study, we explored salivary proteome changes produced in thirty-eight University students by a test stress, which simulated an oral exam. Students underwent a relaxation phase followed by the stress test during which an electrocardiogram was recorded. To evaluate the effect of an olfactory stimulus, half of the students were exposed to a pleasant odor diffused in the room throughout the whole session. Saliva samples were collected after the relaxation phase (T0) and the stress test (T1). State anxiety was also evaluated at T0 and T1. Salivary proteins were separated by two-dimensional electrophoresis, and patterns at different times were compared. Spots differentially expressed were trypsin digested and identified by mass spectrometry. Western blot analysis was used to validate proteomic results. Anxiety scores and heart rate changes indicated that the fake exam induced anxiety. Significant changes of α-amylase, polymeric immunoglobulin receptor (PIGR), and immunoglobulin α chain (IGHA) secretion were observed after the stress test was performed in the two conditions. Moreover, the presence of pleasant odor reduced the acute social stress affecting salivary proteome changes. Therefore, saliva proteomic analysis was a useful approach to evaluate the rapid responses associated to an acute stress test also highlighting known biomarkers.


Seizure ◽  
2019 ◽  
Vol 69 ◽  
pp. 204-206 ◽  
Author(s):  
Federica Avorio ◽  
Alessandra Morano ◽  
Martina Fanella ◽  
Jinane Fattouch ◽  
Mariarita Albini ◽  
...  

2018 ◽  
Vol 39 (4) ◽  
pp. 191-195
Author(s):  
Nicholas J. Kelley ◽  
Adrienne L. Crowell

Abstract. Two studies tested the hypothesis that self-reported sense of smell (i.e., metacognitive insight into one’s olfactory ability) predicts disgust sensitivity and disgust reactivity. Consistent with our predictions two studies demonstrated that disgust correlates with self-reported sense of smell. Studies 1 and 2 demonstrated, from an individual difference perspective, that trait-like differences in disgust relate to self-reported sense of smell. Physical forms of disgust (i.e., sexual and pathogen disgust) drove this association. However, the association between self-reported sense of smell and disgust sensitivity is small, suggesting that it is likely not a good proxy for disgust sensitivity. The results of Study 2 extended this finding by demonstrating that individual differences in self-reported sense of smell influence how individuals react to a disgusting olfactory stimulus. Those who reported having a better sense of smell (or better insight into their olfactory ability) found a disgusting smell significantly more noxious as compared to participants reporting having a poor sense of smell (or poor insight into their olfactory ability). The current findings suggest that a one-item measure of self-reported sense of smell may be an effective tool in disgust research.


Sign in / Sign up

Export Citation Format

Share Document