subdivision curves
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 16 ◽  
Author(s):  
Yan Liu ◽  
Huahao Shou ◽  
Kangsong Ji

Background: Subdivision surfaces modeling method and related technology research gradually become a hot spot in the field of computer-aided design(CAD) and computer graphics (CG). In the early stage, research on subdivision curves and surfaces mainly focused on the relationship between the points, thereby failing to satisfy the requirements of all geometric modeling. Considering many geometric constraints is necessary to construct subdivision curves and surfaces for achieving high-quality geometric modeling. Objective: This paper aims to summarize various subdivision schemes of subdivision curves and surfaces, particularly in geometric constraints, such as points and normals. The findings help scholars to grasp the current research status of subdivision curves and surfaces better and to explore their applications in geometric modeling. Methods: This paper reviews the theory and applications of subdivision schemes from four aspects. We first discuss the background and key concept of subdivision schemes. We then summarize the classification of classical subdivision schemes. Next, we show the subdivision surfaces fitting and summarize new subdivision schemes under geometric constraints. Applications of subdivision surfaces are also discussed. Finally, this paper gives a brief summary and future application prospects. Results: Many research papers and patents of subdivision schemes are classified in this review paper. Remarkable developments and improvements have been achieved in analytical computations and practical applications. Conclusion: Our review shows that subdivision curves and surfaces are widely used in geometric modeling. However, some topics need to be further studied. New subdivision schemes need to be presented to meet the requirements of new practical applications.


2021 ◽  
Author(s):  
J Kosinka ◽  
M Sabin ◽  
Neil Dodgson

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves. We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points. The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new higher-degree polynomial subdivision schemes with crease control without introducing new control points. © 2014 The Authors. Published by Elsevier Inc.


2021 ◽  
Author(s):  
J Kosinka ◽  
M Sabin ◽  
Neil Dodgson

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves. We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points. The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new higher-degree polynomial subdivision schemes with crease control without introducing new control points. © 2014 The Authors. Published by Elsevier Inc.


Author(s):  
S. Eto ◽  
H. Masuda ◽  
Y. Hiraoka ◽  
M. Matsushita ◽  
M. Takahashi

Abstract. Woody biomass is an important parameter in forestry and forest research. In order to estimate of woody biomass, it is important to precisely and efficiently calculate section areas and volumes of tree stems in the forest. In this paper, we propose a method for calculating the cross-sectional area and the stem volume of trees from point clouds captured using the terrestrial laser scanner. In our method, each point cloud is converted into a wireframe model, and cross-section points are calculated as intersection between the wireframe and the horizontal planes placed at equal intervals. Cross-sectional shapes on each horizontal plane are approximated as n-sided polygons and refined using the subdivision scheme. The section areas and stem volumes are calculated using the subdivision curves of stem contours. In our evaluation, our method could calculate section areas and stem volumes of trees with sufficient accuracy in practical use.


2020 ◽  
Author(s):  
J Kosinka ◽  
M Sabin ◽  
Neil Dodgson

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves. We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points. The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new higher-degree polynomial subdivision schemes with crease control without introducing new control points. © 2014 The Authors. Published by Elsevier Inc.


2020 ◽  
Author(s):  
J Kosinka ◽  
M Sabin ◽  
Neil Dodgson

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves. We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points. The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new higher-degree polynomial subdivision schemes with crease control without introducing new control points. © 2014 The Authors. Published by Elsevier Inc.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 66 ◽  
Author(s):  
Aamir Shahzad ◽  
Faheem Khan ◽  
Abdul Ghaffar ◽  
Ghulam Mustafa ◽  
Kottakkaran Sooppy Nisar ◽  
...  

Subdivision schemes are extensively used in scientific and practical applications to produce continuous geometrical shapes in an iterative manner. We construct a numerical algorithm to estimate subdivision depth between the limit curves/surfaces and their control polygons after k-fold subdivisions. In this paper, the proposed numerical algorithm for subdivision depths of binary subdivision curves and surfaces are obtained after some modification of the results given by Mustafa et al in 2006. This algorithm is very useful for implementation of the parametrization.


Author(s):  
Dominic A. Masters ◽  
Nigel J. Taylor ◽  
T. Rendall ◽  
Christian B. Allen

2015 ◽  
Vol 95 (8) ◽  
pp. 1671-1699
Author(s):  
Qingtang Jiang ◽  
James J. Smith

2014 ◽  
Vol 76 (5) ◽  
pp. 240-251 ◽  
Author(s):  
Jiří Kosinka ◽  
Malcolm Sabin ◽  
Neil Dodgson

Sign in / Sign up

Export Citation Format

Share Document