transverse shear resistance
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Qingjie Zhang ◽  
Markus Schäfer

This paper compares the design of composite columns in steel and concrete based on EN1994-1-1 and Chinese JGJ138-2016. First, the application ranges of the codes are pointed out. Both codes contain the design of fully encased composite sections and concrete filled rectangular and circular tubes. However, there are different limitations on cross-section sizes, material strength classes, and others. JGJ138 has three separate chapters for the designs related to the three different types of columns. Eurocode 4 gives three different design methods: one general method based on nonlinear calculation, and two simplified methods based on European buckling curves or N-M iteration curves. For the materials, mechanical properties, such as design strength values, are compared based on the same material grade. For axial compression resistance and eccentrically compressive resistance, the two simplified methods from Eurocode 4 are compared with the design method according to JGJ138-2016 through theoretical and parameter studies. The influences of related parameters such as long-term effects, the buckling curves, and N-M iteration curves are also compared. For shear design, JGJ138-2016 considers mainly transverse shear resistances, while Eurocode 4 further considers shear connection and load introduction. The design transverse shear resistance is compared through theory. 


2007 ◽  
Vol 17 (03) ◽  
pp. 363-392 ◽  
Author(s):  
PATRIZIO NEFF

The existence of minimizers to a geometrically exact Cosserat planar shell model with microstructure is proven. The membrane energy is a quadratic, uniformly Legendre–Hadamard elliptic energy in contrast to traditional membrane energies. The bending contribution is augmented by a curvature term representing the interaction of the rotational microstructure in the Cosserat theory. The model includes non-classical size effects, transverse shear resistance, drilling degrees of freedom and accounts implicitly for thickness extension and asymmetric shift of the midsurface. Upon linearization with zero Cosserat couple modulus μc = 0, one recovers the infinitesimal-displacement Reissner–Mindlin model. It is shown that the Cosserat shell formulation admits minimizers even for μc = 0, in which case the drill-energy is absent. The midsurface deformation m is found in H1(ω, ℝ3). Since the existence of energy minimizers rather than equilibrium solutions is established, the proposed analysis includes the large deformation/large rotation buckling behaviour of thin shells.


Sign in / Sign up

Export Citation Format

Share Document