snp genotyping
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 106)

H-INDEX

66
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ruslan Kalendar ◽  
Akmaral Baidyussen ◽  
Dauren Serikbay ◽  
Lyudmila Zotova ◽  
Gulmira Khassanova ◽  
...  

The proposed method is a modified and improved version of the existing “Allele-specific q-PCR” (ASQ) method for genotyping of single nucleotide polymorphism (SNP) based on fluorescence resonance energy transfer (FRET). This method is similar to frequently used techniques like Amplifluor and Kompetitive allele specific PCR (KASP), as well as others employing common universal probes (UPs) for SNP analyses. In the proposed ASQ method, the fluorophores and quencher are located in separate complementary oligonucleotides. The ASQ method is based on the simultaneous presence in PCR of the following two components: an allele-specific mixture (allele-specific and common primers) and a template-independent detector mixture that contains two or more (up to four) universal probes (UP-1 to 4) and a single universal quencher oligonucleotide (Uni-Q). The SNP site is positioned preferably at a penultimate base in each allele-specific primer, which increases the reaction specificity and allele discrimination. The proposed ASQ method is advanced in providing a very clear and effective measurement of the fluorescence emitted, with very low signal background-noise, and simple procedures convenient for customized modifications and adjustments. Importantly, this ASQ method is estimated as two- to ten-fold cheaper than Amplifluor and KASP, and much cheaper than all those methods that rely on dual-labeled probes without universal components, like TaqMan and Molecular Beacons. Results for SNP genotyping in the barley genes HvSAP16 and HvSAP8, in which stress-associated proteins are controlled, are presented as proven and validated examples. This method is suitable for bi-allelic uniplex reactions but it can potentially be used for 3- or 4-allelic variants or different SNPs in a multiplex format in a range of applications including medical, forensic, or others involving SNP genotyping.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Evgenii Baiakhmetov ◽  
Daria Ryzhakova ◽  
Polina D. Gudkova ◽  
Marcin Nobis
Keyword(s):  

Lab on a Chip ◽  
2022 ◽  
Author(s):  
Nan Li ◽  
Yuanyue Zhang ◽  
Minjie Shen ◽  
Youchun Xu

Hereditary hearing loss is one of the most common human neurosensory disorder, and there is a great need for early intervention methods such as genetically screening newborns. Single nucleotide polymorphisms...


2021 ◽  
Vol 12 ◽  
Author(s):  
Gabriel Keeble-Gagnère ◽  
Raj Pasam ◽  
Kerrie L. Forrest ◽  
Debbie Wong ◽  
Hannah Robinson ◽  
...  

Array-based single nucleotide polymorphism (SNP) genotyping platforms have low genotype error and missing data rates compared to genotyping-by-sequencing technologies. However, design decisions used to create array-based SNP genotyping assays for both research and breeding applications are critical to their success. We describe a novel approach applicable to any animal or plant species for the design of cost-effective imputation-enabled SNP genotyping arrays with broad utility and demonstrate its application through the development of the Illumina Infinium Wheat Barley 40K SNP array Version 1.0. We show that the approach delivers high quality and high resolution data for wheat and barley, including when samples are jointly hybridised. The new array aims to maximally capture haplotypic diversity in globally diverse wheat and barley germplasm while minimizing ascertainment bias. Comprising mostly biallelic markers that were designed to be species-specific and single-copy, the array permits highly accurate imputation in diverse germplasm to improve the statistical power of genome-wide association studies (GWAS) and genomic selection. The SNP content captures tetraploid wheat (A- and B-genome) and Aegilops tauschii Coss. (D-genome) diversity and delineates synthetic and tetraploid wheat from other wheat, as well as tetraploid species and subgroups. The content includes SNP tagging key trait loci in wheat and barley, as well as direct connections to other genotyping platforms and legacy datasets. The utility of the array is enhanced through the web-based tool, Pretzel (https://plantinformatics.io/) which enables the content of the array to be visualized and interrogated interactively in the context of numerous genetic and genomic resources to be connected more seamlessly to research and breeding. The array is available for use by the international wheat and barley community.


Small ◽  
2021 ◽  
pp. 2105538
Author(s):  
Woongsun Choi ◽  
Eunhye Park ◽  
Seojin Bae ◽  
Kyung‐Hak Choi ◽  
Sangeun Han ◽  
...  

2021 ◽  
Author(s):  
Camille Clouard ◽  
Kristiina Ausmees ◽  
Carl Nettelblad

Abstract Background: Despite continuing technological advances, the cost for large-scale genotyping of a high number of samples can be prohibitive. The purpose of this study is to design a cost-saving strategy for SNP genotyping. We suggest making use of pooling, a group testing technique, to drop the amount of SNP arrays needed. We believe that this will be of the greatest importance for non-model organisms with more limited resources in terms of cost-efficient large-scale chips and high-quality reference genomes, such as application in wildlife monitoring, plant and animal breeding, but it is in essence species-agnostic. The proposed approach consists in grouping and mixing individual DNA samples into pools before testing these pools on bead-chips, such that the number of pools is less than the number of individual samples. We present a statistical estimation algorithm, based on the pooling outcomes, for inferring marker-wise the most likely genotype of every sample in each pool. Finally, we input these estimated genotypes into existing imputation algorithms. We compare the imputation performance from pooled data with the Beagle algorithm, and a local likelihood-aware phasing algorithm closely modeled on MaCH that we implemented. Results: We conduct simulations based on human data from the 1000 Genomes Project, to aid comparison with other imputation studies. Based on the simulated data, we find that pooling impacts the genotype frequencies of the directly identifiable markers, without imputation. We also demonstrate how a combinatorial estimation of the genotype probabilities from the pooling design can improve the prediction performance of imputation models. Our algorithm achieves 93% concordance in predicting unassayed markers from pooled data, thus it outperforms the Beagle imputation model which reaches 80% concordance. We observe that the pooling design gives higher concordance for the rare variants than traditional low-density to high-density imputation commonly used for cost-effective genotyping of large cohorts. Conclusions: We present promising results for combining a pooling scheme for SNP genotyping with computational genotype imputation, as demonstrated in simulations on human data, while using half the number of assays needed for sample-wise genotyping. These results could find potential applications in any context where the genotyping costs form a limiting factor on the study size, such as in marker-assisted selection in plant breeding.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3416
Author(s):  
Andrey Rodionov ◽  
Tatiana Deniskova ◽  
Arsen Dotsev ◽  
Valeria Volkova ◽  
Sergey Petrov ◽  
...  

Poaching is one of the major types of wildlife crime in Russia. Remnants of goats (presumably the wild endemic species, the Caucasian tur) were found in an area of the Caucasian mountains. The case study involves a suspected poacher whose vehicle was found to have two duffel bags containing pieces of a carcass, which he claimed was that of a goat from his flock. The aim of the forensic genetic analysis for this case was to (i) establish individual identity and (ii) perform species identification. DNA typing based on fourteen microsatellites revealed that STR-genotypes generated from pieces of evidence found at crime scene fully matched those obtained from the evidence seized from the suspect. The results of genome-wide SNP-genotyping, using Illumina Goat SNP50 BeadChip, provided evidence that the poached animal was a wild Caucasian tur (Capra caucasica). Thus, based on comprehensive molecular genetic analysis, evidence of poaching was obtained and sent to local authorities. To our knowledge, this case study is the first to attempt to use DNA chips in wildlife forensics of ungulates.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Baowei Li ◽  
Yanran Liu ◽  
Xiaodan Hao ◽  
Jinhua Dong ◽  
Limei Chen ◽  
...  

Abstract Background The detection and identification of single nucleotide polymorphism (SNP) is essential for determining patient disease susceptibility and the delivery of medicines targeted to the individual. At present, SNP genotyping technology includes Sanger sequencing, TaqMan-probe quantitative polymerase chain reaction (qPCR), amplification-refractory mutation system (ARMS)-PCR, and Kompetitive Allele-Specific PCR (KASP). However, these technologies have some disadvantages: the high cost of development and detection, long and time consuming protocols, and high false positive rates. Focusing on these limitations, we proposed a new SNP detection method named universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR). In this method, only two types of fluorescence-labeled probes were used for SNP genotyping, thus greatly reducing the cost of development and detection for SNP genotyping. Results In the amplification process of UPIP-qPCR, unlabeled intermediate primers with template-specific recognition functions could trigger probe hydrolysis and specific signal release. UPIP-qPCR can be used successfully and widely for SNP genotyping. The sensitivity of UPIP-qPCR in SNP genotyping was 0.01 ng, the call rate was more than 99.1%, and the accuracy was more than 99.9%. High-throughput DNA microarrays based on intermediate primers can be used for SNP genotyping. Conclusion This novel approach is both cost effective and highly accurate; it is a reliable SNP genotyping method that would serve the needs of the clinician in the provision of targeted medicine.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuan Luo ◽  
Jin Yang ◽  
Zhendong Zhu ◽  
Liangjun Huang ◽  
Asif Ali ◽  
...  

Abstract Background Our recently reported doubled haploid (DH) induction lines e.g., Y3380 and Y3560 are allo-octoploid (AAAACCCC, 2n = 8× ≈ 76), which can induce the maternal parent to produce DH individuals. Whether this induction process is related to the production of aneuploid gametes form male parent and genetic characteristics of the male parent has not been reported yet. Results Somatic chromosome counts of DH inducer parents, female wax-less parent (W1A) and their F1 hybrid individuals revealed the reliability of flow cytometry analysis. Y3560 has normal chromosome behavior in metaphase I and anaphase I, but chromosome division was not synchronized in the tetrad period. Individual phenotypic identification and flow cytometric fluorescence measurement of F1 individual and parents revealed that DH individuals can be distinguished on the basis of waxiness trait. The results of phenotypic identification and flow cytometry can identify the homozygotes or heterozygotes of F1 generation individuals. The data of SNP genotyping coupled with phenotypic waxiness trait revealed that the genetic distance between W1A and F1 homozygotes were smaller as compared to their heterozygotes. It was found that compared with allo-octoploids, aneuploidy from allo-octoploid segregation did not significantly increase the DH induction rate, but reduced male infiltration rate and heterozygous site rate of induced F1 generation. The ploidy, SNP genotyping and flow cytometry results cumulatively shows that DH induction is attributed to the key genes regulation from the parents of Y3560 and Y3380, which significantly increase the induction efficiency as compared to ploidy. Conclusion Based on our findings, we hypothesize that genetic characteristics and aneuploidy play an important role in the induction of DH individuals in Brassca napus, and the induction process has been explored. It provides an important insight for us to locate and clone the genes that regulate the inducibility in the later stage.


Sign in / Sign up

Export Citation Format

Share Document