multiplicity free
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 4 (6) ◽  
pp. 1073-1117
Author(s):  
Shiliang Gao ◽  
Reuven Hodges ◽  
Gidon Orelowitz

10.37236/9216 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Markus Hunziker ◽  
John A. Miller ◽  
Mark Sepanski

By the Pieri rule, the tensor product of an exterior power and a finite-dimensional irreducible representation of a general linear group has a multiplicity-free decomposition. The embeddings of the constituents  are called Pieri inclusions and were first studied by Weyman in his thesis and described explicitly by Olver. More recently, these maps have appeared in the work of Eisenbud, Fløystad, and Weyman and of Sam and Weyman to compute pure free resolutions for classical groups. In this paper, we give a new closed form, non-recursive description of Pieri inclusions. For partitions with a bounded number of distinct parts, the resulting algorithm has polynomial time complexity whereas the previously known algorithm has exponential time complexity.


Author(s):  
Martin W. Liebeck ◽  
Gary M. Seitz ◽  
Donna M. Testerman

Author(s):  
Ashish Mishra ◽  
Shraddha Srivastava

Kudryavtseva and Mazorchuk exhibited Schur–Weyl duality between the rook monoid algebra [Formula: see text] and the subalgebra [Formula: see text] of the partition algebra [Formula: see text] acting on [Formula: see text]. In this paper, we consider a subalgebra [Formula: see text] of [Formula: see text] such that there is Schur–Weyl duality between the actions of [Formula: see text] and [Formula: see text] on [Formula: see text]. This paper studies the representation theory of partition algebras [Formula: see text] and [Formula: see text] for rook monoids inductively by considering the multiplicity free tower [Formula: see text] Furthermore, this inductive approach is established as a spectral approach by describing the Jucys–Murphy elements and their actions on the canonical Gelfand–Tsetlin bases, determined by the aforementioned multiplicity free tower, of irreducible representations of [Formula: see text] and [Formula: see text]. Also, we describe the Jucys–Murphy elements of [Formula: see text] which play a central role in the demonstration of the actions of Jucys–Murphy elements of [Formula: see text] and [Formula: see text].


2021 ◽  
Vol 32 (1) ◽  
pp. 9-32
Author(s):  
C. Choi ◽  
◽  
S. Kim ◽  
H. Seo ◽  
◽  
...  

We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grLn, we give some explicit constructions of weight multiplicity-free irreducible representations of gl(n).


Sign in / Sign up

Export Citation Format

Share Document