signorini condition
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 66 (4) ◽  
pp. 769-781
Author(s):  
Sihem Smata ◽  
◽  
Nemira Lebri ◽  

We consider a mathematical model which describes the dynamic pro- cess of contact between a piezoelectric body and an electrically conductive foun- dation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law with thermal e ects. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear rst order evolution inequali- ties, the equations with monotone operators, and the xed point arguments.


2018 ◽  
Vol 24 (5) ◽  
pp. 1503-1529 ◽  
Author(s):  
Philippe G. Ciarlet ◽  
Cristinel Mardare ◽  
Paolo Piersanti

Our objective is to identify two-dimensional equations that model an obstacle problem for a linearly elastic elliptic membrane shell subjected to a confinement condition expressing that all the points of the admissible deformed configurations remain in a given half-space. To this end, we embed the shell into a family of linearly elastic elliptic membrane shells, all sharing the same middle surface [Formula: see text], where [Formula: see text] is a domain in [Formula: see text] and [Formula: see text] is a smooth enough immersion, all subjected to this confinement condition, and whose thickness [Formula: see text] is considered as a “small” parameter approaching zero. We then identify, and justify by means of a rigorous asymptotic analysis as [Formula: see text] approaches zero, the corresponding “limit” two-dimensional variational problem. This problem takes the form of a set of variational inequalities posed over a convex subset of the space [Formula: see text]. The confinement condition considered here considerably departs from the Signorini condition usually considered in the existing literature, where only the “lower face” of the shell is required to remain above the “horizontal” plane. Such a confinement condition renders the asymptotic analysis substantially more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.


2011 ◽  
Vol 22 (5) ◽  
pp. 471-491 ◽  
Author(s):  
MIRCEA SOFONEA ◽  
ANDALUZIA MATEI

We consider a class of quasi-variational inequalities arising in a large number of mathematical models, which describe quasi-static processes of contact between a deformable body and an obstacle, the so-called foundation. The novelty lies in the special structure of these inequalities that involve a history-dependent term as well as in the fact that the inequalities are formulated on the unbounded interval of time [0, +∞). We prove an existence and uniqueness result of the solution, then we complete it with a regularity result. The proofs are based on arguments of monotonicity and convexity, combined with a fixed point result obtained in [22]. We also describe a number of quasi-static frictional contact problems in which we model the material's behaviour with an elastic or viscoelastic constitutive law. The contact is modelled with normal compliance, with normal damped response or with the Signorini condition, as well, associated to versions of Coulomb's law of dry friction or to the frictionless condition. We prove that all these models cast in the abstract setting of history-dependent quasi-variational inequalities, with a convenient choice of spaces and operators. Then, we apply the abstract results in order to prove the unique weak solvability of each contact problem.


2011 ◽  
Vol 11 (4) ◽  
Author(s):  
Jan Eisner ◽  
Martin Väth

AbstractWe consider a reaction-diffusion system of activator-inhibitor or substrate-depletion type in one space dimension which is subject to diffusion-driven instability. We determine the change of bifurcation when a pure Neumann condition is supplemented with a Signorini condition. We show that this change differs essentially from the known case when also Dirichlet conditions are assumed.


Sign in / Sign up

Export Citation Format

Share Document