insulin secretory granule
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 118 (37) ◽  
pp. e2107665118
Author(s):  
Elisabeth Kemter ◽  
Andreas Müller ◽  
Martin Neukam ◽  
Anna Ivanova ◽  
Nikolai Klymiuk ◽  
...  

β cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo–labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 515
Author(s):  
Mark Germanos ◽  
Andy Gao ◽  
Matthew Taper ◽  
Belinda Yau ◽  
Melkam A. Kebede

The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.


2021 ◽  
Author(s):  
Jovana Vasiljević ◽  
Djordje Vasiljević ◽  
Katharina Ganß ◽  
Anke Sönmez ◽  
Carolin Wegbrod ◽  
...  

The glucose-stimulated biosynthesis of insulin in pancreatic islet beta cells is post-transcriptionally regulated. Several RNA-binding proteins (RBPs) that regulate Insulin mRNA stability and translation also bind mRNAs coding for other insulin secretory granule (ISG) proteins. However, an overview of these interactions and their glucose-induced remodelling is still missing. Here we identify two distinct sets of RBPs which were preferentially pulled down with the 5'-UTRs of mouse Ins1, Ins2, spliced Ins2, Ica512/Ptprn and Pc2/Pcsk2 mRNAs from extracts of either resting or stimulated mouse insulinoma MIN6 cells compared to those recovered with the 5'-UTR of mouse Tubg1 encoding for γ-tubulin. Among RBPs binding in resting conditions to all tested transcripts for ISG components was hnRNP A2/B1. Hnrnpa2b1 KO MIN6 cells contained lower levels of Ins1 mRNA, proinsulin and insulin compared to control cells. In resting cells, both hnRNP A2/B1 and Insulin mRNAs localized to stress granules, which dissolved upon glucose stimulation. Insulin mRNA-positive RNA granules were also found in human pancreatic beta cells in situ. Our results suggest that resting beta cells store mRNAs for insulin secretory granule proteins in stress granules through specific RNA protein interactions. Glucose stimulation remodels these interactions, releasing the transcripts, and another set of RBPs coordinates their translation.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 288
Author(s):  
Nicholas Norris ◽  
Belinda Yau ◽  
Melkam Alamerew Kebede

Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.


2021 ◽  
Author(s):  
Elisabeth Kemter ◽  
Andreas Müller ◽  
Martin Neukam ◽  
Anna Ivanova ◽  
Nikolai Klymiuk ◽  
...  

β-cells produce, store and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β-cell function is mostly derived from studies of ex vivo isolated islets and/or rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Jonathan S. Bogan

Pancreatic β cells secrete insulin in response to increased glucose concentrations. Müller et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010039) use 3D FIB-SEM to study the architecture of these cells and to elucidate how glucose stimulation remodels microtubules to control insulin secretory granule exocytosis.


2020 ◽  
Vol 220 (2) ◽  
Author(s):  
Andreas Müller ◽  
Deborah Schmidt ◽  
C. Shan Xu ◽  
Song Pang ◽  
Joyson Verner D’Costa ◽  
...  

Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule–organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.


2020 ◽  
Vol 40 ◽  
pp. 101015 ◽  
Author(s):  
Gaelle R. Carrat ◽  
Elizabeth Haythorne ◽  
Alejandra Tomas ◽  
Leena Haataja ◽  
Andreas Müller ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 343-LB
Author(s):  
GAELLE CARRAT ◽  
ELIZABETH HAYTHORNE ◽  
LEENA HAATAJA ◽  
PETER ARVAN ◽  
ALEJANDRA TOMAS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document