nonlinear perturbation
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Zhenfeng Shi ◽  
Daqing Jiang ◽  
Ningzhong Shi ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edir Junior Ferreira Leite

Abstract This paper deals with maximum principles depending on the domain and ABP estimates associated to the following Lane–Emden system involving fractional Laplace operators: { ( - Δ ) s ⁢ u = λ ⁢ ρ ⁢ ( x ) ⁢ | v | α - 1 ⁢ v in  ⁢ Ω , ( - Δ ) t ⁢ v = μ ⁢ τ ⁢ ( x ) ⁢ | u | β - 1 ⁢ u in  ⁢ Ω , u = v = 0 in  ⁢ ℝ n ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=\lambda\rho(x% )\lvert v\rvert^{\alpha-1}v&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle(-\Delta)^{t}v&\displaystyle=\mu\tau(x)\lvert u\rvert^{\beta-1}u&% &\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=v=0&&\displaystyle\phantom{}\text{in }\mathbb{R}% ^{n}\setminus\Omega,\end{aligned}\right. where s , t ∈ ( 0 , 1 ) {s,t\in(0,1)} , α , β > 0 {\alpha,\beta>0} satisfy α ⁢ β = 1 {\alpha\beta=1} , Ω is a smooth bounded domain in ℝ n {\mathbb{R}^{n}} , n ≥ 1 {n\geq 1} , and ρ and τ are continuous functions on Ω ¯ {\overline{\Omega}} and positive in Ω. We establish some maximum principles depending on Ω. In particular, we explicitly characterize the measure of Ω for which the maximum principles corresponding to this problem hold in Ω. For this, we derived an explicit lower estimate of principal eigenvalues in terms of the measure of Ω. Aleksandrov–Bakelman–Pucci (ABP) type estimates for the above systems are also proved. We also show the existence of a viscosity solution for a nonlinear perturbation of the nonhomogeneous counterpart of the above problem with polynomial and exponential growths. As an application of the maximum principles, we measure explicitly how small | Ω | {\lvert\Omega\rvert} has to be to ensure the positivity of the obtained solutions.


Author(s):  
Zhenfeng Shi ◽  
Daqing Jiang ◽  
Ningzhong Shi ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

In this paper, we developed and studied a stochastic HIV model with nonlinear perturbation. Through a rigorous analysis, we firstly showed that the solution of the stochastic model is positive and global. Then, by employing suitable stochastic Lyapunov functions, we prove that the stochastic model admit a unique ergodic stationary distribution. In addition, sufficient conditions for the extinction of HIV infection are derived. Finally, numerical simulations are employed to confirm our theoretical results.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Anton Chudaykin ◽  
Mikhail M. Ivanov ◽  
Oliver H. E. Philcox ◽  
Marko Simonović

Sign in / Sign up

Export Citation Format

Share Document