helicoidal surfaces
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 29 (3) ◽  
pp. 269-283
Author(s):  
Ali Uçum ◽  
Makoto Sakaki

Abstract In this paper, we study generalized helicoidal surfaces in Euclidean 5-space. We obtain the necessary and sufficient conditions for generalized helicoidal surfaces in Euclidean 5-space to be minimal, flat or of zero normal curvature tensor, which are ordinary differential equations. We solve those equations and discuss the completeness of the surfaces.


Author(s):  
Renzo Caddeo ◽  
Irene I. Onnis ◽  
Paola Piu

AbstractIn this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space $${\mathbb {R}}^3$$ R 3 to the case of helicoidal surfaces in the Bianchi–Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chul Woo Lee ◽  
Jae Won Lee ◽  
Dae Won Yoon

Abstract In this paper, we study a conformally flat 3-space 𝔽 3 {\mathbb{F}_{3}} which is an Euclidean 3-space with a conformally flat metric with the conformal factor 1 F 2 {\frac{1}{F^{2}}} , where F ⁢ ( x ) = e - x 1 2 - x 2 2 {F(x)=e^{-x_{1}^{2}-x_{2}^{2}}} for x = ( x 1 , x 2 , x 3 ) ∈ ℝ 3 {x=(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}} . In particular, we construct all helicoidal surfaces in 𝔽 3 {\mathbb{F}_{3}} by solving the second-order non-linear ODE with extrinsic curvature and mean curvature functions. As a result, we give classification of minimal helicoidal surfaces as well as examples for helicoidal surfaces with some extrinsic curvature and mean curvature functions in 𝔽 3 {\mathbb{F}_{3}} .


2020 ◽  
Vol 8 ◽  
Author(s):  
Safaa Mosa ◽  
Mervat Elzawy

Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Önder Yıldız

In this paper, we construct a helicoidal surface with a prescribed weighted mean curvature and weighted extrinsic curvature in a 3-dimensional complete manifold with a positive density function. We get a result for the minimal case. Additionally, we give examples of a helicoidal surface with a weighted mean curvature and weighted extrinsic curvature.


2018 ◽  
Vol 26 (3) ◽  
pp. 99-108 ◽  
Author(s):  
Önder Gökmen Yıldız ◽  
Selman Hızal ◽  
Mahmut Akyiğit

AbstractIn this paper, we construct a helicoidal surface of type I+ with prescribed weighted mean curvature and Gaussian curvature in the Minkowski 3−space ${\Bbb R}_1^3$with a positive density function. We get a result for minimal case. Also, we give examples of a helicoidal surface with weighted mean curvature and Gaussian curvature.


Sign in / Sign up

Export Citation Format

Share Document