pyropia yezoensis
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 100)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Guoying Du ◽  
Xiaojiao Li ◽  
Junhao Wang ◽  
Shuai Che ◽  
Xuefeng Zhong ◽  
...  

AbstractMacroalgae that inhabit intertidal zones are exposed to the air for several hours during low tide and must endure desiccation and high variations in temperature, light intensity, and salinity. Pyropia yezoensis (Rhodophyta, Bangiales), a typical intertidal red macroalga that is commercially cultivated in the northwestern Pacific Ocean, was investigated under different dehydration stresses of desiccation, high salinity, and high mannitol concentration. Using chlorophyll fluorescence imaging, photosynthetic activities of P. yezoensis thalli were analyzed using six parameters derived from quenching curves and rapid light curves. A distinct discrepancy was revealed in photosynthetic responses to different dehydration stresses. Dehydration caused by exposure to air resulted in rapid decreases in photosynthetic activities, which were always lower than two other stresses at the same water loss (WL) level. High salinity only reduced photosynthesis significantly at its maximum WL of 40% but maintained a relatively stable maximum quantum yield of photosystem II (PSII) (Fv/Fm). High mannitol concentration induced maximum WL of 20% for a longer time (60 min) than the other two treatments and caused no adverse influences on the six parameters at different WL except for a significant decrease in non-photochemical quenching (NPQ) at 20% WL. Illustrated by chlorophyll fluorescence images, severe spatial heterogeneities were induced by desiccation with lower values in the upper parts than the middle or basal parts of the thalli. The NPQ and rETRmax (maximum relative electron transport rate) demonstrated clear distinctions for evaluating photosynthetic responses, indicating their sensitivity and applicability. The findings of this study indicated that the natural dehydration of exposure to air results in stronger and more heterogeneous effects than those of high salinity or high mannitol concentration.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6479
Author(s):  
Selvakumari Ulagesan ◽  
Taek-Jeong Nam ◽  
Youn-Hee Choi

Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria that is widely used as a fluorescent probe or as a colorant in the food and cosmetic industries. In this study, phycoerythrin was extracted from the red algae Pyropia yezoensis and purified by ammonium sulfate precipitation and various chromatography methods. The purified phycoerythrin was analyzed by UV-visible and fluorescence spectroscopy. The isolated pigment had the typical spectrum of R-phycoerythrin, with a trimmer state with absorbance maxima at 497, 536, and 565 nm. It was further purified and identified by LC-MS/MS and Mascot search. It showed a 100% sequence similarity with the R-phycoerythrin alpha subunit of Pyropia yezoensis. The molecular mass was 17.97 kDa. The antioxidant activity of the purified R-phycoerythrin alpha subunit was analyzed. It showed significant antioxidant activity in ABTS and FRAP assays and had significant cytotoxicity against HepG2 cells.


Author(s):  
Yoichiro Hama ◽  
Emi Yamagata ◽  
Noriko Takahama ◽  
Yuka Yoshimura ◽  
Rin Yanagida ◽  
...  

AbstractIn this study, dried sheets of nori, shredded and processed thalli of the red alga Pyropia yezoensis, were fermented with either barley, rice or soybean koji. High-performance liquid chromatographic analyses of the lipid extracts of the fermented products indicated that the fermentation of nori with all kinds of tested koji released free fatty acids, including the eicosapentaenoic acid, from ester lipids. We found that approximately half of the eicosapentaenoic acid in nori had been released as the free fatty acid at up to 4 weeks of fermentation at 30 °C and more than 65% at 8 to12 weeks in the fermented products with barley and rice koji. We also demonstrated the degradation of porphyran, a major cell wall polysaccharide of nori, by gel chromatography on Sephacryl S-300 HR of hot water extracts of the fermented products of nori with barley koji. Approximately two-third of porphyran had been degraded to porphyran oligosaccharides up to 6 weeks of fermentation. Fermentation of nori with koji may bring out the potential health-promoting functions of nori.


2021 ◽  
Vol 58 ◽  
pp. 102428
Author(s):  
Megumu Takahashi ◽  
Koji Mikami

2021 ◽  
Vol 58 ◽  
pp. 102420
Author(s):  
Yingchao Ma ◽  
Bangxiang He ◽  
Xulei Wang ◽  
Linwen He ◽  
Jianfeng Niu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xinzi Yu ◽  
Zhaolan Mo ◽  
Xianghai Tang ◽  
Tian Gao ◽  
Yunxiang Mao

Abstract Background Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. Results We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. Conclusions These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.


ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 207-217
Author(s):  
Narae Han ◽  
Jiwoong Wi ◽  
Sungoh Im ◽  
Ka-Min Lim ◽  
Hun-Dong Lee ◽  
...  

An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.


ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 219-229
Author(s):  
Ji-Hyeok Lee ◽  
Ginne Ahn ◽  
Ju-Young Ko ◽  
Nalae Kang ◽  
Kyungsook Jung ◽  
...  

The hepatoprotective effect of liposoluble portion of Pyropia yezoensis (PYLP) was investigated against alcohol-induced liver injury in mice. Fatty acids were predominant in PYLP obtained from hexane fraction of 70% EtOH extract after ultrasonication. In particular, polyunsaturated fatty acids such as eicosapentaenoic acid and linoleic acid accounted for 56.91% of the total lipids. PYLP significantly reduced liver damage induced by the alcohol treatment in mice. PYLP treatment increased the activity of antioxidant enzymes including superoxide dismutase, catalase, and glutathion peroxidase by reducing thiobarbituric acid reactive substances. Histological observations showed that PYLP minimizes damage to living tissue induced by alcohol treatment by modulating the expression level of proteins involved in the anti-apoptotic signaling pathway. Our results suggest that PYLP, rich in polyunsaturated fatty acids extracted from the red alga P. yezoensis, will be useful as a potential liver protectant in the hangover industry.


Sign in / Sign up

Export Citation Format

Share Document