dna mismatch repair
Recently Published Documents


TOTAL DOCUMENTS

1128
(FIVE YEARS 176)

H-INDEX

83
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Abhijit Rath ◽  
Alexander A Radecki ◽  
Kaussar Rahman ◽  
Rachel B Gilmore ◽  
Jonathan R Hudson ◽  
...  

PURPOSE: Functional assays provide important evidence for classifying the disease significance of germline variants in the DNA mismatch repair genes. We sought to develop a cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. METHODS: Using CRISPR gene editing, we knocked-in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact at the RNA and protein level, including their ability to maintain stability of microsatellite sequences and instigate a DNA damage response. We calibrated these assays by testing well-established pathogenic and benign control variants. RESULTS: Five VUS resulted in functionally abnormal protein, 15 VUS resulted in functionally normal protein, and one VUS showed mixed results. Furthermore, we converted the functional outputs into a single odds in favor of pathogenicity score for each VUS. CONCLUSION: Our CRISPR-based functional assay successfully models phenotypes observed in patients in a cellular context. Using this approach, we generated evidence for or against pathogenicity for utilization by variant classification expert panels. Ultimately, this information will assist in proper diagnosis and disease management for suspected Lynch syndrome patients.


2021 ◽  
Vol 7 (45) ◽  
Author(s):  
Hu Fang ◽  
Xiaoqiang Zhu ◽  
Haocheng Yang ◽  
Jieun Oh ◽  
Jayne A. Barbour ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Felipe A. Calil ◽  
Bin-Zhong Li ◽  
Kendall A. Torres ◽  
Katarina Nguyen ◽  
Nikki Bowen ◽  
...  

AbstractEukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways.


Sign in / Sign up

Export Citation Format

Share Document