loss of righting reflex
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 11 (40) ◽  
pp. 208-208
Author(s):  
Indrani Chakraborty ◽  
Arniban Sukul ◽  
Nirmal Sukul

Potentized Nux Vomica has been reported to produce antialcoholic effect in mice, rats and toads. The effect relates to consumption of alcohol and alcohol-induced loss of righting reflex (RR). RR’s maintain normal erect posture of an animal and are centrally controlled in the midbrain. In the present study young toads, Duttaphrynus melanostictus were first treated with Nux vomica 200 CH and then partially immersed in 209 mM ethanol solution in such a way that their head remained above the level of ethanol solution. Toadlets were removed from the ethanol solution every 10 min, tested for the loss of RR and returned to the ethanol solution. Toadlets were placed in a supine position on a dry flat surface. Failure to right within 60 sec was considered as the loss of RR. The experiment was repeated 10 times. Control toadlets were pretreated with 90% ethanol instead of Nux Vomica 200 CH. The percentages of toadlets showing loss of RR, both in the control as well as in the Nux-treated groups, were shown in graphs against the duration of exposure to ethanol solution. Differences in the percentage distribution between the control and the treatment groups losing RR were tested by χ2 test. All the experiments were conducted at room temperature. The percentage of toadlets losing RR increased with time of exposure to ethanol solution. The increase was significantly higher with the control than with the Nux-treated group. Nux Vomica 200 CH might have influenced the mid-brain of toadlets thereby countering the hypnotic effect of ethanol in the toadlets.


2021 ◽  
Vol 11 (40) ◽  
pp. 192-193
Author(s):  
Cloe Taddei-Ferretti

Background and Aims. There are several experimental evidences for the effects of high-diluted substances (see e.g. C. Taddei-Ferretti, A. Cotugno 1997, on effects of high-diluted drugs on the prevention and control of mice teratogenicity induced by purine derivatives; N.C. Sukul, C. Taddei-Ferretti, S.P. Sinha Babu, A. De, B. Nandi, A. Sukul, R. Dutta-Nag 2000, on high-diluted Nux vomica countering alcohol-induced loss of righting reflex in toads). Also the physical characterization and mechanism of action of high-diluted drugs have been studied (see e.g. N.C. Sukul, A. Sukul, High dilution effects: Physical and biochemical basis 2004). However, further experimental researches are needed to clarify how physical characteristics of a drug are linked to its global biological effects. Considerations on some high-diluted mineral remedies will be developer here. Methods. In Organon, sect. 119, S. Hahnemann writes: «As certainly each species of plants is different from every other one with regard to external appearance, way of life and growth, taste and smell, and as certainly each mineral, each salt is different from the others with regard to external, internal, physical and chemical qualities [...], so certainly all these vegetal and mineral substances have pathogenetic – and thus also curative – effects different among themselves [...]». This statement may be taken as basis for considering the characteristics of some elements, as ordered in the periodic table, in relation to those of some high-diluted mineral remedies. Conclusions. The elements were previously ordered in the periodic table according to the atomic weight chemically determined, and later more precisely according to the atomic number (number of protons). Then also the electronic configuration was taken into account: properties depending on atomic mass and deep electrons are not periodical, while chemical and several physical properties are linked to external electrons which have periodical configuration. In particular, let us consider the group of elements C, P, S, Cl and the group of elements Ca, Mg, K, Na. One may conclude that the four elements of the first group (respectively receiver-or-donor of 4 electrons, receiver of 3, of 2, of 1 electron), which, according to H. Bernard, are linked to the fixed human constitutions, are close among themselves in the periodic table, while they are very distant from the four elements of the second group (respectively donor of 2, of 2, of 1, of 1 electron), which are close among themselves and are linked to the changing constitutional stages.


2021 ◽  
Vol 23 (1) ◽  
pp. 42
Author(s):  
Na Wang ◽  
Jingjing Lian ◽  
Yanqing Cao ◽  
Alai Muheyati ◽  
Shanshan Yuan ◽  
...  

Benzodiazepines (BZDs) produce versatile pharmacological actions through positive modulation of GABAA receptors (GABAARs). A previous study has demonstrated that high concentrations of diazepam potentiate GABA currents on the α1β2γ2 and α1β2 GABAARs in a flumazenil-insensitive manner. In this study, the high-concentration effects of BZDs and their sensitivity to flumazenil were determined on synaptic (α1β2γ2, α2β2γ2, α5β2γ2) and extra-synaptic (α4β2δ) GABAARs using the voltage-clamp electrophysiology technique. The in vivo evaluation of flumazenil-insensitive BZD effects was conducted in mice via the loss of righting reflex (LORR) test. Diazepam induced biphasic potentiation on the α1β2γ2, α2β2γ2 and α5β2γ2 GABAARs, but did not affect the α4β2δ receptor. In contrast to the nanomolar component of potentiation, the second potentiation elicited by micromolar diazepam was insensitive to flumazenil. Midazolam, clonazepam, and lorazepam at 200 µM exhibited similar flumazenil-insensitive effects on the α1β2γ2, α2β2γ2 and α5β2γ2 receptors, whereas the potentiation induced by 200 µM zolpidem or triazolam was abolished by flumazenil. Both the GABAAR antagonist pentylenetetrazol and Fa173, a proposed transmembrane site antagonist, abolished the potentiation induced by 200 µM diazepam. Consistent with the in vitro results, flumazenil antagonized the zolpidem-induced LORR, but not that induced by diazepam or midazolam. Pentylenetetrazol and Fa173 antagonized the diazepam-induced LORR. These findings support the existence of non-classical BZD binding sites on certain GABAAR subtypes and indicate that the flumazenil-insensitive effects depend on the chemical structures of BZD ligands.


2021 ◽  
Author(s):  
Amanda Michelle Starr ◽  
Masoud Zabet-Moghaddam ◽  
Michael San Francisco

Abstract The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations . The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae ( Galleria mellonella) . Concentrated filtrates caused melanization within 24 hours, while live B. dendrobatidis caused melanization within 48 hours. Our results indicate B. dendrobatidis produces secreted metabolites previously unreported. These findings provide another alternative for the use of a non-amphibian model system to study pathogenicity traits in this fungus.


Author(s):  
Meghan M. Louis ◽  
Gregory Scott ◽  
Dustin Smith ◽  
Brigid V. Troan ◽  
Larry J. Minter ◽  
...  

Euthanasia techniques in amphibians are poorly described and sparsely validated. This study investigated potassium chloride (KCl) for euthanasia of anesthetized marine toads ( Rhinella marina ). Twenty three toads were immersed in buffered MS-222 (2 g/L) for five minutes (min) beyond loss of righting reflex, manually removed, and randomly administered KCl (n = 6/group) via one of three routes: intracardiac at 10 mEq/kg (IC), intracoelomic at 100 mEq/kg (ICe), or immersion at 4500 mEq/L (IMS) or no treatment (C) (n = 5/group). Doppler sounds were assessed continuously from prior to treatment until two min post-treatment and every five min thereafter until sound cessation or resumption of spontaneous movement. Plasma potassium concentration (K+) was measured at the time of Doppler sound cessation in ICe and IMS. In IC, ICe, IMS, and C, Doppler sound cessation occurred in 4/6, 6/6, 6/6, and 1/5 toads with median (range) or mean + SD times of 0.23 (0-4.65), 17.5 + 9.0, 40.6 + 10.9, and >420 min, respectively. Nonsuccess in 2/6 toads in IC was suspected due to technique failure. Plasma K+ exceeded the limits of detection (>9 mmol/L) in 12/12 toads in ICe and IMS. Five of six toads in C resumed spontaneous movement at median (range) times of 327 (300-367) min. KCl delivered via an intracardiac, intracoelomic, or immersion routes resulted in Doppler sound cessation in 16 of 18 toads and may be appropriate for euthanasia of anesthetized marine toads.


2021 ◽  
Vol 14 ◽  
Author(s):  
Loreto S. San Martin ◽  
Lorena Armijo-Weingart ◽  
Anibal Araya ◽  
Gonzalo E. Yévenes ◽  
Robert J. Harvey ◽  
...  

The glycine receptor (GlyR), a ligand-gated ion channel, is critical for inhibitory neurotransmission in brainstem, spinal cord, and in supraspinal regions. Recent data from several laboratories have shown that GlyRs are expressed in the brain reward circuitry and that α1 and α2 are the principal subunits expressed in the nucleus accumbens (nAc). In the present study, we studied the sensitivity to ethanol of homomeric and heteromeric α3 GlyR subunits in HEK293 cells and dissociated neurons from the nAc. Finally, we explored ethanol-related behaviors in a Glra3 knockout mouse (Glra3–/–). Studies in HEK293 cells showed that while homomeric α3 GlyR subunits were insensitive to ethanol, heteromeric α3β GlyR subunits showed higher sensitivity to ethanol. Additionally, using electrophysiological recordings in dissociated accumbal neurons, we found that the glycine current density increased in Glra3–/– mice and the GlyRs were less affected by ethanol and picrotoxin. We also examined the effect of ethanol on sedation and drinking behavior in Glra3–/– mice and found that the duration in the loss of righting reflex (LORR) was unchanged compared to wild-type (WT) mice. On the other hand, using the drinking in the dark (DID) paradigm, we found that Glra3–/– mice have a larger ethanol consumption compared to WT mice, and that this was already high during the first days of exposure to ethanol. Our results support the conclusion that heteromeric α3β, but not homomeric α3, GlyRs are potentiated by ethanol. Also, the increase in GlyR and GABAAR mediated current densities in accumbal neurons in the KO mice support the presence of compensatory changes to α3 knock out. The increase in ethanol drinking in the Glra3–/– mice might be associated to the reduction in β and compensatory changes in other subunits in the receptor arrangement.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuan Vinh To ◽  
Fatima A. Nasrallah

AbstractThis data collection contains Magnetic Resonance Imaging (MRI) data, including structural, diffusion, stimulus-evoked, and resting-state functional MRI and behavioural assessment results, including acute post-impact Loss-of-Righting Reflex time and acute, subacute, and longer-term Neural Severity Score, and Open Field Behaviour obtained from a mouse model of concussion. Four cohorts with 43 3–4 months old male mice in total were used: Sham (n = 14, n = 6 day 2, n = 3 day 7, n = 5 day 14), concussion day 2 (CON 2; n = 9), concussion day 7 (CON 7; n = 10), concussion day 14 (CON 14; n = 10). The data collection contains the aforementioned MRI data in compressed NIFTI format, data sheets on animal’s backgrounds and behavioural outcomes and is made publicly available from a data repository. The available data are intended to facility cross-study comparisons, meta-analysis, and science reproducibility.


2021 ◽  
Vol 22 (14) ◽  
pp. 7460
Author(s):  
Eileen Carry ◽  
Dushyant Kshatriya ◽  
Joshua Silva ◽  
Daryl L. Davies ◽  
Bo Yuan ◽  
...  

Dihydromyricetin is a natural bioactive flavonoid with unique GABAA receptor activity with a putative mechanism of action to reduce the intoxication effects of ethanol. Although dihydromyricetin’s poor oral bioavailability limits clinical utility, the promise of this mechanism for the treatment of alcohol use disorder warrants further investigation into its specificity and druggable potential. These experiments investigated the bioavailability of dihydromyricetin in the brain and serum associated with acute anti-intoxicating effects in C57BL/6J mice. Dihydromyricetin (50 mg/kg IP) administered 0 or 15-min prior to ethanol (PO 5 g/kg) significantly reduced ethanol-induced loss of righting reflex. Total serum exposures (AUC0→24) of dihydromyricetin (PO 50 mg/kg) via oral (PO) administration were determined to be 2.5 µM × h (male) and 0.7 µM × h (female), while intraperitoneal (IP) administration led to 23.8-fold and 7.2- increases in AUC0→24 in male and female mice, respectively. Electrophysiology studies in α5β3γ2 GABAA receptors expressed in Xenopus oocytes suggest dihydromyricetin (10 µM) potentiates GABAergic activity (+43.2%), and the metabolite 4-O-methyl-dihydromyricetin (10 µM) negatively modulates GABAergic activity (−12.6%). Our results indicate that administration route and sex significantly impact DHM bioavailability in mice, which is limited by poor absorption and rapid clearance. This correlates with the observed short duration of DHM’s anti-intoxicating properties and highlights the need for further investigation into mechanism of DHM’s potential anti-intoxicating properties.


2021 ◽  
Vol 15 ◽  
Author(s):  
Emma R. Huels ◽  
Trent Groenhout ◽  
Christopher W. Fields ◽  
Tiecheng Liu ◽  
George A. Mashour ◽  
...  

Studies aimed at investigating brain regions involved in arousal state control have been traditionally limited to subcortical structures. In the current study, we tested the hypothesis that inactivation of prefrontal cortex, but not two subregions within parietal cortex—somatosensory barrel field and medial/lateral parietal association cortex—would suppress arousal, as measured by an increase in anesthetic sensitivity. Male and female Sprague Dawley rats were surgically prepared for recording electroencephalogram and bilateral infusion into prefrontal cortex (N = 13), somatosensory barrel field (N = 10), or medial/lateral parietal association cortex (N = 9). After at least 10 days of post-surgical recovery, 156 μM tetrodotoxin or saline was microinjected into one of the cortical sites. Ninety minutes after injection, rats were anesthetized with 2.5% sevoflurane and the time to loss of righting reflex, a surrogate for loss of consciousness, was measured. Sevoflurane was stopped after 45 min and the time to return of righting reflex, a surrogate for return of consciousness, was measured. Tetrodotoxin-mediated inactivation of all three cortical sites decreased (p < 0.05) the time to loss of righting reflex. By contrast, only inactivation of prefrontal cortex, but not somatosensory barrel field or medial/lateral parietal association cortex, increased (p < 0.001) the time to return of righting reflex. Burst suppression ratio was not altered following inactivation of any of the cortical sites, suggesting that there was no global effect due to pharmacologic lesion. These findings demonstrate that prefrontal cortex plays a causal role in emergence from anesthesia and behavioral arousal.


2021 ◽  
pp. 026988112110085
Author(s):  
Riccardo Maccioni ◽  
Filippo Cottiglia ◽  
Elias Maccioni ◽  
Giuseppe Talani ◽  
Enrico Sanna ◽  
...  

Background: Clinical and experimental studies support the therapeutic potential of Withania somnifera ( WS) (L.) Dunal on anxiety disorders. This potential is attributable to components present in different plant extracts; however, the individual compound(s) endowed with specific anxiolytic effects and potential modulatory activity of the GABAA receptor complex (GABAAR) have remained unidentified until the recent isolation from a WS methanolic root extract of some GABAAR-active compounds, including the long alkyl-chain ferulic acid ester, docosanyl ferulate (DF). Aims: This study was designed to assess whether DF (0.05, 0.25 and 2 mg/kg), similarly to diazepam (2 mg/kg), may exert anxiolytic effects, whether these effects may be significantly blocked by the benzodiazepine antagonist flumazenil (10 mg/kg) and whether DF may lack some of the benzodiazepines’ typical motor, cognitive and motivational side effects. Methods: The behavioural paradigms Elevated Plus Maze, Static Rods, Novel Object Recognition, Place Conditioning and potentiation of ethanol-induced Loss of Righting Reflex were applied on male CD-1 mice. Results: Similarly to diazepam, DF exerts anxiolytic effects that are blocked by flumazenil. Moreover, at the full anxiolytic dose of 2 mg/kg, DF lacks typical benzodiazepine-like side effects on motor and cognitive performances and on place conditioning. Moreover, DF fails to potentiate ethanol’s (3 g/kg) depressant activity at the ethanol-induced Loss of Righting Reflex paradigm. Conclusions: These data point to DF as an effective benzodiazepine-like anxiolytic compound that, in light of its lack of motor, mnemonic and motivational side effects, could be a suitable candidate for the treatment of anxiety disorders.


Sign in / Sign up

Export Citation Format

Share Document