polymers of intrinsic microporosity
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 83)

H-INDEX

46
(FIVE YEARS 10)

2022 ◽  
Vol 35 ◽  
pp. 100766
Author(s):  
Ariana R Antonangelo ◽  
Natasha Hawkins ◽  
Mariolino Carta

2022 ◽  
Vol 35 ◽  
pp. 100765
Author(s):  
Frank Marken ◽  
Lina Wang ◽  
Yuanzhu Zhao ◽  
Zhongkai Li ◽  
Mandana Amiri ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Esra Caliskan ◽  
Sergey Shishatskiy ◽  
Silvio Neumann ◽  
Volker Abetz ◽  
Volkan Filiz

In the present work, a set of anthracene maleimide monomers with different aliphatic side groups obtained by Diels Alder reactions were used as precursors for a series of polymers of intrinsic microporosity (PIM) based homo- and copolymers that were successfully synthesized and characterized. Polymers with different sizes and shapes of aliphatic side groups were characterized by size-exclusion chromatography (SEC), (nuclear magnetic resonance) 1H-NMR, thermogravimetric (TG) analysis coupled with Fourier-Transform-Infrared (FTIR) spectroscopy (TG-FTIR) and density measurements. The TG-FTIR measurement of the monomer-containing methyl side group revealed that the maleimide group decomposes prior to the anthracene backbone. Thermal treatment of homopolymer methyl-100 thick film was conducted to establish retro-Diels Alder rearrangement of the homopolymer. Gas and water vapor transport properties of homopolymers and copolymers were investigated by time-lag measurements. Homopolymers with bulky side groups (i-propyl-100 and t-butyl-100) experienced a strong impact of these side groups in fractional free volume (FFV) and penetrant permeability, compared to the homopolymers with linear alkyl side chains. The effect of anthracene maleimide derivatives with a variety of aliphatic side groups on water vapor transport is discussed. The maleimide moiety increased the water affinity of the homopolymers. Phenyl-100 exhibited a high water solubility, which is related to a higher amount of aromatic rings in the polymer. Copolymers (methyl-50 and t-butyl-50) showed higher CO2 and CH4 permeability compared to PIM-1. In summary, the introduction of bulky substituents increased free volume and permeability whilst the maleimide moiety enhanced the water vapor affinity of the polymers.


Sign in / Sign up

Export Citation Format

Share Document