lattice shell
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Caiqi Zhao ◽  
Yunwen Zhou ◽  
Gang Wang ◽  
Yating Wang ◽  
Haoyue Li

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3268-3282
Author(s):  
Caiqi Zhao ◽  
Yunwen Zhou ◽  
Gang Wang ◽  
Haoyue Li ◽  
Yating Wang

Author(s):  
Shiro Kato ◽  
Yutaka Niho

The load factor is one of the keys in anti-buckling design for safety together for construction cost, and studies have been becoming demanded in a recent situation that super large and super light spatial structures have been constructed. This paper investigates the relationship between reliability index β and snow load factor γs for anti-buckling design of a simply supported cylindrical lattice shell roof under simultaneous action of both dead load and asymmetric snow load. The cylindrical lattice shell analyzed is composed of an equilateral triangle grid of which members are of steel circular hollow sections. Members are connected rigidly to nodes at their both ends. The snow distribution as a main target is assumed in a way that the snow depth on the half of the arch-like roof is half of the amount on the other half roof. The snow fall depth is here assumed 50cm evaluated as 100-year return period, and its probability is assumed as Gumbel distribution with 100-year reference period. The probability distribution of buckling strength Pcr including geometrical and material nonlinearities is approximately evaluated based on a first-order perturbation. The reliability is calculated based on AFOSM, and the relationship in a form of β to γs is finally expressed for design use.


2019 ◽  
Vol 53 (6) ◽  
pp. 811-819
Author(s):  
C. Zhao ◽  
J. Ma ◽  
S. Du ◽  
Y. Gu ◽  
Y. Zhou

2019 ◽  
Vol 22 (15) ◽  
pp. 3234-3248
Author(s):  
Xi Wang ◽  
Ruo-qiang Feng ◽  
Gui-rong Yan ◽  
Bao-chen Zhu ◽  
Feng-cheng Liu

The cable-stiffened lattice shell is a new structural system for its translucence and lighting. This article discusses the effect of the connections’ behavior and geometric imperfection on the structural stability and reveals the buckling mechanism of the cable-stiffened lattice shell. The spring stiffness for bolted connections of cable-stiffened lattice shells is deduced from the spring in series model. The buckling mechanism of cable-stiffened lattice shells with three types of joints have been studied based on the prototypical static experiments of bolted connections. The decrease of bolted connections’ stiffness would lead to the change in the displacement distribution for the lattice shell under its ultimate load. The buckling loads and initial structural stiffness of cable-stiffened lattice shells with shim-strengthened bolted joints are approximately 80% of those for cable-stiffened lattice shells with rigid joints. The result indicates that the buckling loads of cable-stiffened lattice shells with bolted connections decrease much more slowly than the decrease of bolted connections’ stiffness. The cable-stiffened lattice shell with SBP connections is more sensitive to the initial geometric imperfection. Finally, a formula has been proposed for estimating buckling loads of elliptic paraboloid cable-stiffened lattice shells with bolted connections.


Author(s):  
Mark Cabrinha ◽  
Dante Testolini ◽  
Ben Korman

2019 ◽  
Vol 84 (762) ◽  
pp. 1081-1091
Author(s):  
Shun NAKAJIMA ◽  
Yuki TERAZAWA ◽  
Toru TAKEUCHI ◽  
Toshiyuki OGAWA ◽  
Yoshihiro YAMAZAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document