lenticular galaxies
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
J Vega-Ferrero ◽  
H Domínguez Sánchez ◽  
M Bernardi ◽  
M Huertas-Company ◽  
R Morgan ◽  
...  

Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.


Author(s):  
A. Poci ◽  
R. M. McDermid ◽  
M. Lyubenova ◽  
L. Zhu ◽  
G. van de Ven ◽  
...  

2021 ◽  
Vol 645 ◽  
pp. L13
Author(s):  
S. Comerón

One of the suggested thick disc formation mechanisms is that they were born quickly and in situ from a turbulent clumpy disc. Subsequently, thin discs formed slowly within them from leftovers of the turbulent phase and from material accreted through cold flows and minor mergers. In this Letter, I propose an observational test to verify this hypothesis. By combining thick disc and total stellar masses of edge-on galaxies with galaxy stellar mass functions calculated in the redshift range of z ≤ 3.0, I derived a positive correlation between the age of the youngest stars in thick discs and the stellar mass of the host galaxy; galaxies with a present-day stellar mass of ℳ⋆(z = 0) < 1010 ℳ⊙ have thick disc stars as young as 4 − 6 Gyr, whereas the youngest stars in the thick discs of Milky-Way-like galaxies are ∼10 Gyr old. I tested this prediction against the scarcely available thick disc age estimates, all of them are from galaxies with ℳ⋆(z = 0) ≳ 1010 ℳ⊙, and I find that field spiral galaxies seem to follow the expectation. On the other hand, my derivation predicts ages that are too low for the thick discs in lenticular galaxies, indicating a fast early evolution for S0 galaxies. I propose the idea of conclusively testing whether thick discs formed quickly and in situ by obtaining the ages of thick discs in field galaxies with masses of ℳ⋆(z = 0) ∼ 109.5 ℳ⊙ and by checking whether they contain ∼5 Gyr-old stars.


2021 ◽  
Vol 93 (suppl 1) ◽  
Author(s):  
ARIANNA CORTESI ◽  
KANAK SAHA ◽  
FABRICIO FERRARI ◽  
GEFERSON LUCATELLI ◽  
CLAUDIA M. DE OLIVEIRA ◽  
...  
Keyword(s):  

2020 ◽  
Vol 64 (12) ◽  
pp. 985-993
Author(s):  
O. K. Sil’chenko
Keyword(s):  

2020 ◽  
Vol 641 ◽  
pp. A31
Author(s):  
A. Shelest ◽  
F. Lelli

Rotation curves have traditionally been difficult to trace for early-type galaxies (ETGs) because they often lack a high-density disk of cold gas as in late-type galaxies (LTGs). In this work, we derive rotation curves for three lenticular galaxies from the ATLAS3D survey, combining CO data in the inner parts with deep HI data in the outer regions, extending out to 10−20 effective radii. We also use Spitzer photometry at 3.6 μm to decompose the rotation curves into the contributions of baryons and dark matter (DM). We find that (1) the rotation-curve shapes of these ETGs are similar to those of LTGs of a similar mass and surface brightness; (2) the dynamically-inferred stellar mass-to-light ratios are small for quiescent ETGs but similar to those of star-forming LTGs; (3) the DM halos follow the same scaling relations with galaxy luminosity as those of LTGs; and (4) one galaxy (NGC 3626) is poorly fit by cuspy DM profiles, suggesting that DM cores may exist in high-mass galaxies too. Our results indicate that these lenticular galaxies have recently transitioned from LTGs to ETGs without altering their DM halo structure (e.g., via a major merger), and they could be faded spirals. We also confirm that ETGs follow the same radial acceleration relation as LTGs, reinforcing the notion that this is a universal law for all galaxy types.


2020 ◽  
Vol 160 (2) ◽  
pp. 95
Author(s):  
Olga K. Sil’chenko ◽  
Alexei Yu. Kniazev ◽  
Ekaterina M. Chudakova
Keyword(s):  

2020 ◽  
Vol 15 (S359) ◽  
pp. 173-174
Author(s):  
A. Cortesi ◽  
L. Coccato ◽  
M. L. Buzzo ◽  
K. Menéndez-Delmestre ◽  
T. Goncalves ◽  
...  

AbstractWe present the latest data release of the Planetary Nebulae Spectrograph Survey (PNS) of ten lenticular galaxies and two spiral galaxies. With this data set we are able to recover the galaxies’ kinematics out to several effective radii. We use a maximum likelihood method to decompose the disk and spheroid kinematics and we compare it with the kinematics of spiral and elliptical galaxies. We build the Tully- Fisher (TF) relation for these galaxies and we compare with data from the literature and simulations. We find that the disks of lenticular galaxies are hotter than the disks of spiral galaxies at low redshifts, but still dominated by rotation velocity. The mechanism responsible for the formation of these lenticular galaxies is neither major mergers, nor a gentle quenching driven by stripping or Active Galactic Nuclei (AGN) feedback.


2020 ◽  
Vol 493 (2) ◽  
pp. 2253-2270 ◽  
Author(s):  
Carlos G Escudero ◽  
Favio R Faifer ◽  
Analía V Smith Castelli ◽  
Mark A Norris ◽  
Juan C Forte

ABSTRACT We present a photometric study of the field lenticular galaxy NGC 4546 using Gemini/GMOS imaging in g′r′i′z′. We perform a 2D image decomposition of the surface brightness distribution of the galaxy using galfit, finding that four components adequately describe it. The subtraction of this model from our images and the construction of a colour map allow us to examine in great detail the asymmetric dust structures around the galactic centre. In addition, we perform a detailed analysis of the globular cluster (GC) system of NGC 4546. Using a Gaussian Mixture Model algorithm in the colour–colour plane, we detected hints of multiple groups of GC candidates: the classic blue and red subpopulations, a group with intermediate colours that present a concentrated spatial distribution towards the galaxy, and an additional group towards the red end of the colour distribution. We estimate a total GC population for NGC 4546 of 390 ± 60 members and specific frequency SN = 3.3 ± 0.7, which is relatively high compared to the typical value for galaxies of similar masses and environment. We suggest that the unusual GC population substructures were possibly formed during the interaction that led to the formation of the young ultra-compact dwarf (NGC 4546-UCD1) found in this system. Finally, we estimate the distance modulus of NGC 4546 by analysing its luminosity function, resulting in (m − M) = 30.75 ± 0.12 mag (14.1 Mpc).


Sign in / Sign up

Export Citation Format

Share Document