signal value
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 29)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shashvat Prakash ◽  
Antoni Brzoska

Component failures in complex systems are often expensive. The loss of operation time is compounded by the costs of emergency repairs, excess labor, and compensation to aggrieved customers. Prognostic health management presents a viable option when the failure onset is observable and the mitigation plan actionable. As data-driven approaches become more favorable, success has been measured in many ways, from the basic outcomes, i.e. costs justify the prognostic, to the more nuanced detection tests. Prognostic models, likewise, run the gamut from purely physics-based to statistically inferred. Preserving some physics has merit as that is the source of justification for removing a fully functioning component. However, the method for evaluating competing strategies and optimizing for performance has been inconsistent. One common approach relies on the binary classifier construct, which compares two prediction states (alert or no alert) with two actual states (failure or no failure). A model alert is a positive; true positives are followed by actual failures and false positives are not. False negatives are when failures occur without any alert, and true negatives complete the table, indicating no alert and no failure. Derivatives of the binary classifier include concepts like precision, i.e. the ratio of alerts which are true positives, and recall, the ratio of events which are preceded by an alert. Both precision and recall are useful in determining whether an alert can be trusted (precision) or how many failures it can catch (recall).  Other analyses recognize the fact that the underlying sensor signal is continuous, so the alerts will change along with the threshold. For instance, a threshold that is more extreme will result in fewer alerts and therefore more precision at the cost of some recall. These types of tradeoff studies have produced the receiver operating characteristic (ROC) curve. A few ambiguities persist when we apply the binary classifier construct to continuous signals. First, there is no time axis. When does an alert transition from prescriptive to low-value or nuisance? Second, there is no consideration of the nascent information contained in the underlying continuous signal. Instead, it is reduced to alerts via a discriminate threshold. Fundamentally, prognostic health management is the detection of precursors. Failures which can be prognosticated are necessarily a result of wear-out modes. Whether the wear out is detectable and trackable is a system observability issue. Observability in signals is a concept rooted in signal processing and controls. A system is considered observable if the internal state of the system can be estimated using only the sensor information. In a prognostic application, sensor signals intended to detect wear will also contain some amount of noise. This case, noise is anything that is not the wear-out mode. It encompasses everything from random variations of the signal, to situations where the detection is intermittent or inconsistent. Hence, processing the raw sensor signal to maximize the wear-out precursors and minimize noise will provide an overall benefit to the detection before thresholds are applied. The proposed solution is a filter tuned to maximize detection of the wear-out mode. The evaluation of the filter is crucial, because that is also the evaluation of the entire prognostic. The problem statement transforms from a binary classifier to a discrete event detection using a continuous signal. Now, we can incorporate the time dimension and require a minimum lead time between a prognostic alert and the event. Filter evaluation is fundamentally performance evaluation for the prognostic detection. First, we aggregate the filtered values in a prescribed lead interval n samples before each event. Each lead trace is averaged so that there is one characteristic averaged behavior before an event. In this characteristic trace, we can consider the value at some critical actionable time, tac, before the event, after which there is insufficient time to act on the alert. The filtered signal value at this critical time should be anomalous, i.e. it should be far from its mean value. Further, the filtered value in the interval preceding tac should transition from near-average to anomalous. Both the signal value at tac­ as well as the filtered signal behavior up to that point present independent evaluation metrics. These frame the prognostic detection problem as it should be stated, as a continuous signal detecting a discrete event, rather than a binary classifier. A strong anomaly in the signal that precedes events on an aggregated basis is the alternate performance metric. If only a subset of events show an anomaly, that means the detection failure mode is unique to those events, and the performance can be evaluated accordingly. Thresholding is the final step, once the detection is optimized. The threshold need not be ambiguous at this step. The aggregated trace will indicate clearly which threshold will provide the most value.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bianka Marklein ◽  
Madeleine Jenning ◽  
Zoltán Konthur ◽  
Thomas Häupl ◽  
Franziska Welzel ◽  
...  

Abstract Background There is a need for biomarker to identify patients “at risk” for rheumatoid arthritis (risk-RA) and to better predict the therapeutic response and in this study we tested the hypothesis that novel native and citrullinated heterogeneous nuclear ribonucleoprotein (hnRNP)-DL autoantibodies could be possible biomarkers. Methods Using protein macroarray and ELISA, epitope recognition against hnRNP-DL was analysed in sera from different developed RA disease and diagnosed SLE patients. Toll-like receptor (TLR) 7/9 and myeloid differentiation primary response gene 88 (MyD88)-dependency were studied in sera from murine disease models. HnRNP-DL expression in cultivated cells and synovial tissue was analysed by indirect immunofluorescence, immunoblot and immunohistochemistry. Results HnRNP-DL was highly expressed in stress granules, citrullinated in the rheumatoid joint and targeted by autoantibodies either as native or citrullinated proteins in patient subsets with different developed RA disease. Structural citrullination dependent epitopes (SCEs) of hnRNP-DL were detected in 58% of the SLE patients although 98% of these sera were α-CCP-2-negative. To obtain a specific citrullinated signal value, we subtracted the native antibody value from the citrullinated signal. The citrullinated/native index of autoantibodies against hnRNP-DL (CNDL-Index) was identified as a new value for an “individual window of treatment success” in early RA and for the detection of RF IgM/α-CCP-2 seronegative RA patients (24–46%). Negative CNDL-index was found in SLE patients, risk-RA and early RA cohorts such as EIRA where the majority of these patients are DAS28-responders to methotrexate (MTX) treatment (87%). High positive CNDL-values were associated with more severe RA, shared epitope and parenchymal changes in the lung. Specifically, native α-hnRNP-DL is TLR7/9-dependent, associated with pain and ROC analysis revealed an association to initial MTX or etanercept treatment response, especially in seronegative RA patients. Conclusion CNDL-index defines people at risk to develop RA and the “window of treatment success” thereby closing the sensitivity gap in RA.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gabrielle S. M. Winandy ◽  
Rafael P. Félix ◽  
Rafaela A. Sacramento ◽  
Rilquer Mascarenhas ◽  
Henrique Batalha-Filho ◽  
...  

Anthropogenic noise can interfere with animal behavior through masking of acoustic communication. In response to masking, animals may change their acoustic signals as an apparent adjustment strategy, but this may have a drawback on signal quality. Songs and calls may show noise-dependent changes in frequency and duration, which may yield some masking avoidance, but may also constrain other acoustic parameters that might carry information about the sender. In the present study, we investigated whether noise-dependent reduction in frequency bandwidth or song duration restricted syllable diversity or song elaboration in a Neotropical songbird, the bananaquit (Coereba flaveola). We show that bananaquits sing higher frequency songs, of narrower bandwidth, in noisier territories, independent of variation in territory density, without significant variation in song duration. We also show that songs with higher minimum frequencies, narrower bandwidths, and shorter durations have on average a lower number of syllable types and higher syllable rates. This finding is in line with an acoustic restriction and may reflect a functional trade-off between audibility and signal value: higher frequencies may be more audible but less elaborate songs may weaken the message of sender quality. Consequently, noise pollution may not only alter avian communities, but also shape acoustic diversity and processes of sexual selection in urban environments.


2021 ◽  
Author(s):  
Bianka Marklein ◽  
Madeleine Jenning ◽  
Zoltán Konthur ◽  
Thomas Häupl ◽  
Franziska Welzel ◽  
...  

Abstract BackgroundThere is a need for biomarker to identify patients ‘at risk’ for rheumatoid arthritis (risk-RA) and to better predict the therapeutic response and in this study we tested the hypothesis that novel native and citrullinated heterogeneous nuclear ribonucleoprotein (hnRNP)-DL autoantibodies could be possible biomarkers.MethodsUsing Protein macroarray and ELISA, epitope recognition against hnRNP-DL was analysed in sera from different developed RA disease and diagnosed SLE patients. Toll-like receptor (TLR) 7/9 and myeloid differentiation primary response gene 88 (MyD88)-dependency were studied in sera from murine disease models. HnRNP-DL expression in cultivated cells and synovial tissue was analysed by indirect immunofluorescence, immunoblot and immunohistochemistry. ResultshnRNP-DL was highly expressed in stress granules, citrullinated in the rheumatoid joint and targeted by autoantibodies either as native or citrullinated proteins in patient subsets with different developed RA disease. Structural citrullination dependent epitopes (SCEs) of hnRNP-DL were detected in 58% of the SLE patients although 98% of these sera were α-CCP2-negative. To obtain a specific citrullinated signal value, we subtracted the native antibody value from the citrullinated signal. This CNDL (Citrullinated-Native-hnRNP-DL)-index identified and the bioinformatic value was explored, as a new value for an “individual window of treatment success” in early RA and for the detection of RF-IgM/α-CCP2 seronegative RA patients (24-46%). Negative CNDL-index was found in SLE patients, risk-RA- and early RA-cohorts such as EIRA where the majority of these patients are DAS28-responders to methotrexate (MTX) treatment (87%). High positive CNDL-values were associated with more severe RA, shared epitope and parenchymal changes in the lung. Specifically, native α-hnRNP-DL is TLR7/9-dependent, associated with pain and ROC-analysis revealed an association to initial MTX or etanercept treatment response, especially in seronegative RA patients.ConclusionCNDL-index defines patients is a possible biomarker for develop RA and the “window of treatment success” thereby potentially closing the sensitivity gap.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gabrielle S. M. Winandy ◽  
Hilton F. Japyassú ◽  
Patrícia Izar ◽  
Hans Slabbekoorn

Birds communicate through acoustic variation in their songs for territorial defense and mate attraction. Noisy urban conditions often induce vocal changes that can alleviate masking problems, but that may also affect signal value. We investigated this potential for a functional compromise in a neotropical songbird: the bananaquit (Coereba flaveola). This species occurs in urban environments with variable traffic noise levels and was previously found to reduce song elaboration in concert with a noise-dependent reduction in song frequency bandwidth. Singing higher and in a narrower bandwidth may make their songs more audible in noisy conditions of low-frequency traffic. However, it was unknown whether the associated decrease in syllable diversity affected their communication. Here we show that bananaquits responded differently to experimental playback of elaborate vs. simple songs. The variation in syllable diversity did not affect general response strength, but the tested birds gave acoustically distinct song replies. Songs had fewer syllables and were lower in frequency and of wider bandwidth when individuals responded to elaborate songs compared to simple songs. This result suggests that noise-dependent vocal restrictions may change the signal value of songs and compromise their communicative function. It remains to be investigated whether there are consequences for individual fitness and how such effects may alter the diversity and density of the avian community in noisy cities.


2021 ◽  
Author(s):  
Allison J Lazard ◽  
J Scott Babwah Brennen ◽  
Stephanie P Belina

BACKGROUND Despite the ubiquity of smartphones, there is little guidance for how to design mobile health apps to increase use. Specifically, knowing what features users expect, grab their attention, encourage use (via predicted use or through positive app evaluations), and signal beneficial action possibilities can guide and focus app development efforts. OBJECTIVE We investigated what features users expect and how the design (prototypicality) impacts app adoption. METHODS In a web-based survey, we elicited expectations, including presence and placement, for 12 app features. Thereafter, participants (n=462) viewed 2 health apps (high prototypicality similar to top downloaded apps vs low prototypicality similar to research interventions) and reported willingness to download, attention, and predicted use of app features. Participants rated both apps (high and low) for aesthetics, ease of use, usefulness, perceived affordances, and intentions to use. RESULTS Most participants (425/462, 92%) expected features for navigation or personal settings (eg, menu) in specific regions (eg, top corners). Features with summary graphs or statics were also expected by many (395-396 of 462, 86%), with a center placement expectation. A feature to “share with friends” was least expected among participants (203/462, 44%). Features fell into 4 unique categories based on attention and predicted use, including <i>essential features</i> with high (&gt;50% or &gt;231 of 462) predicted use and attention (eg, calorie trackers), <i>flashy features</i> with high attention but lower predicted use (eg, links to specific diets), <i>functional features</i> with modest attention and low use (eg, settings), and <i>mundane features</i> with low attention and use (eg, discover tabs). When given a choice, 347 of 462 (75%) participants would download the high-prototypicality app. High prototypicality apps (vs low) led to greater aesthetics, ease of use, usefulness, and intentions, (for all, <i>P</i>&lt;.001). Participants thought that high prototypicality apps had more perceived affordances. CONCLUSIONS Intervention designs that fail to meet a threshold of mHealth expectations will be dismissed as less usable or beneficial. Individuals who download health apps have shared expectations for features that should be there, as well as where these features should appear. Meeting these expectations can improve app evaluations and encourage use. Our typology should guide presence and placement of expected app features to signal value and increase use to impact preventive health behaviors. Features that will likely be used and are attention-worthy—essential, flashy, and functional—should be prioritized during app development.


2021 ◽  
pp. 002224372110124
Author(s):  
Oguz A. Acar ◽  
Darren W. Dahl ◽  
Christoph Fuchs ◽  
Martin Schreier

Crowdfunding has emerged as an alternative means of financing new ventures by utilizing the financial support of a large group of individual investors. In this research, we ask a novel question: does being crowdfunded carry any signal value for the broader market of observing consumers? Seven studies reveal a consumer preference for “crowdfunded products”, even after controlling for a product’s objective product characteristics. We identify two inferences that help explain this effect: (1) consumers perceive crowdfunded products to be of higher quality, and (2) they believe that supporting crowdfunding reduces inequality in the marketplace. We further document an important boundary condition of the first inference: our identified effect reverses in high risk domains (e.g., products that involve high physical risk), due to consumer perceptions that the crowdfunding model lacks sufficient professionalism to mitigate risk. With regard to the second inference, we find that the positive crowdfunding effect is particularly strong among consumers who value social equality. Taken together, our work sheds new light on consumer perceptions of crowdfunding, elucidates why and when consumers prefer crowdfunded products, and offers actionable implications for managers.


2021 ◽  
Vol 21 (3) ◽  
pp. 1403-1412
Author(s):  
Xiaoguang Hao ◽  
Weijing Li

Molybdenum dioxide-gadolinium-arginine/glycine/aspartic acid (MoS2-Gd-RGD) sequences targeting nano-contrast agents that specifically bind to human hepatocellular carcinoma (HCC) HepG2 cells were synthesized, and their targeting imaging effects on HCC cells and models were evaluated. Zeta potential, particle size and Fourier Transform Infrared Spectrometer (FTIR) were used to characterize the nano-contrast agent, and its cytotoxicity was evaluated. The MoS2-Gd nanoparticles were used as control in vitro to determine the targeting capability of the MoS2-Gd-RGD nanoparticles toward integrin αvβ3. During in vivo animal experiments, 12 nude mice with tumors were randomly divided into three groups to compare the imaging effects of the MoS2-Gd-RGD and MoS2-Gd groups. The hydrodynamic diameter of MoS2-Gd-RGD nanoparticles was approximately 336.43±6.43 nm, and the polydispersity index (PDI) value reached 0.132. Transmission electron microscopy showed the uniform particle size and good dispersion of the nanoparticles. The relaxation rate totaled 1.39 mM−1S−1. The signal value of the T1-weighted image of the HepG2 cells treated with MoS2-Gd-RGD was higher than that of the non-targeted materials (MoS2-Gd) (P < 0.01). The signal value of the tumor increased significantly 15 min after the tail vein injection with MoS2-Gd-RGD, and it peaked at 60 min after injection. A significant difference in tumor signal values was observed between the two groups of nude mice injected with MoS2-Gd-RGD and MoS2- Gd (P < 0.01). At the in vitro and in vivo experiments, the MoS2-Gd-RGD nanoparticles presented the characteristics of integrin αvβ3 targeting. Thus, MoS2-Gd-RGD nanoparticles feature potential as contrast agents for MRI.


Author(s):  
Asmir Gračanin ◽  
Emiel Krahmer ◽  
Martijn Balsters ◽  
Dennis Küster ◽  
Ad J. J. M. Vingerhoets

Sign in / Sign up

Export Citation Format

Share Document