harvesting regime
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 2)

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 416 ◽  
Author(s):  
Joshua A. Machicek ◽  
Brock C. Blaser ◽  
Murali Darapuneni ◽  
Marty B. Rhoades

As water levels in the Ogallala Aquifer continue to decline in the Texas High Plains, alternative forage crops that utilize less water must be identified to meet the forage demand of the livestock industry in this region. A two-year (2016 and 2017) study was conducted at West Texas A&M University Nance Ranch near Canyon, TX to evaluate the forage production and quality of brown midrib (BMR) sorghum-sudangrass (SS) (Sorghum bicolor (L.) Moench ssp. Drummondii) and BMR pearl millet (PM) (Pennisetum glaucum (L.) Leeke)) harvested under three regimes (three 30-d, two 45-d, and one 90-d harvests). Sorghum-sudangrass consistently out yielded PM in total DM production in both tested years (yield range 3.96 to 6.28 Mg DM ha−1 vs. 5.38 to 11.19 Mg DM ha−1 in 2016 and 6.00 to 9.87 Mg DM ha−1 vs. 6.53 to 15.51 Mg DM ha−1 in 2017). Water use efficiency was higher in PM compared to SS. The 90-d harvesting regime maximized the water use efficiency and DM production compared to other regimes in both crops; however, some forage quality may be sacrificed. In general, the higher forage quality was achieved in shorter interval harvesting regimes (frequent cuttings). The selection of suitable forage crop and harvesting regime based on this research can be extremely beneficial to the producers of Texas High Plains to meet their individual forage needs and demand.


Author(s):  
Firas F. Siala ◽  
Michael W. Prier ◽  
James A. Liburdy

The influence of vortex dynamics on the force production of a heaving and pitching foil operating in the energy harvesting regime is studied experimentally using 2C-PIV. Results are obtained for reduced frequencies in the range of k = fc/U = 0.06 to 0.14. The flow induced vertical force-time history during cyclic operation is evaluated from PIV data by using the impulse-based derivative moment transformation method. The contribution of each term in the equation is investigated. The results show that the leading edge vortex has the largest contribution to the total force, whereas the trailing edge vortex is shown to contribute negatively. In addition, the dynamics of the leading edge vortex are further analyzed by measuring the circulation and trajectory relative to the foil. It is shown that the force is not only dependent on the circulation magnitude, but also on the LEV foil-normal and chord-wise trajectories. The force-time history for all reduced frequencies exhibit two main distinct peaks. The primary peak is generated when the leading edge vortex forms. The secondary peak, on the other hand, is formed when the chord-wise convection of the leading edge vortex increases, as well as when the LEV is closer to the foil surface during the reversal of pitching motion.


2018 ◽  
Vol 45 (6) ◽  
pp. 490
Author(s):  
E. Hance Ellington ◽  
Paul D. Flournoy ◽  
Chris P. Dwyer ◽  
Mark D. Witt ◽  
Stanley D. Gehrt

Context By the early 1900s, river otters (Lontra canadensis) were extirpated across large parts of their range in North America. Over the last several decades they have made a remarkable recovery through widespread reintroduction programs. River otters were reintroduced in Ohio, USA, between 1988 and 1993, and restricted and limited harvesting of this population began in 2005. While circumstantial evidence points to rapid population growth following the reintroduction, changes in population size over time is unknown. Aims We sought to model river otter population growth following reintroduction, and to assess the impact of harvesting. Methods We used empirical and literature-based data on river otter demographics in Ohio to estimate abundance from 1988–2008 using an age- and sex-specific stochastic Leslie matrix model. Additionally, we used statistical population reconstruction (SPR) methods to estimate population abundance of river otters in Ohio from 2006 to 2008. Results Our Leslie matrix model predicted a population size of 4115 (s.d. = 1169) in 2005, with a population growth rate (λ) of 1.28 in 2005. Using SPR methods we found that both trapper effort and initial population abundance influenced our population estimates from 2006 to 2008. If we assumed that river otter pelt price was an accurate index of trapper effort, and if the initial population was between 2000 and 4000, then we estimated the λ to be 1.27–1.31 in 2008 and the exponential rate to be 0.17–0.21 from 2006 to 2008. Conversely, if the river otter population in 2005 was 1000, then we estimated λ to be 1.20 in 2008 and the exponential rate to be 0.08 from 2006 to 2008. Conclusions The river otter population in Ohio appears to have had the potential to grow rapidly following reintroduction. The ultimate effect of the harvesting regime on population abundance, however, remains clouded by limited data availability and high variability. Implications The considerable uncertainty surrounding population estimates of river otters in Ohio under the harvesting regime was largely driven by lack of additional data. This uncertainty clouds our understanding of the status of river otters in Ohio, but a more robust, long-term monitoring effort would provide the data necessary to more precisely monitor the population.


Author(s):  
Firas F. Siala ◽  
Alexander D. Totpal ◽  
James A. Liburdy

An experimental investigation is conducted to study the leading edge vortex (LEV) evolution of a simultaneously heaving and pitching foil operating in the energy harvesting regime. Two dimensional particle image velocimetry measurements are collected in a wind tunnel at reduced frequencies of k = fc/U = 0.05–0.20. Vorticity flux analysis is performed to calculate the constant C in the vortex formation number equation proposed by J. O. Dabiri [1], and it is shown that for a flapping foil operating in the energy harvesting regime, this constant is approximately equal to 1.33. We demonstrate that the optimal LEV formation number (T̂max ≈ 4) is achieved at k = 0.11, which is well within the range of optimal reduced frequency for energy harvesting applications (k = 0.1–0.15). This suggests that the flow energy extraction is closely related to the efficient evolution process of the LEV.


2017 ◽  
Vol 29 (3) ◽  
pp. 1449-1459 ◽  
Author(s):  
Rebecca J Lawton ◽  
Nicholas A Paul ◽  
Dustin J. Marshall ◽  
Keyne Monro

2016 ◽  
Vol 63 (5) ◽  
pp. 626-637 ◽  
Author(s):  
M. Ângelo Rodrigues ◽  
Sandra Afonso ◽  
Isabel Q. Ferreira ◽  
Margarida Arrobas

2016 ◽  
Vol 97 (6) ◽  
pp. 1223-1232 ◽  
Author(s):  
Jack A. Emmerson ◽  
Jodie A. Haig ◽  
Georgia Robson ◽  
Hilmar Hinz ◽  
Lewis Le Vay ◽  
...  

The common prawn (Palaemon serratus) supports a small-scale but economically important seasonal static-gear fishery in Cardigan Bay, Wales (UK). Due to a lack of statutory obligation and scientific evidence, the fishery has operated to date without any harvest-control rules that afford protection from overfishing. In response to fluctuations in landings and in pursuit of increased economic returns for their catch, some members of the fishing industry have adopted a size-selective harvesting regime, which we evaluate here using baseline data. Monthly samples were obtained from fishers operating out of five ports between October 2013 and May 2015 (N = 4233). All prawn were sexed, weighed and measured, whilst the fecundity of females was estimated for 273 (44%) individuals. Peak spawning occurred during the spring and females were estimated to undergo a ‘puberty moult’ at a carapace length (CL) of 7.7 mm, whilst functional maturity was estimated at a CL of 9.9 mm. The sampled population exhibited sexual dimorphism, with females attaining a greater size than males. The current harvesting regime results in a sex bias in landings as even large mature males remained under the recruitment size to the fishery, unlike the large mature females. The temporal trend in sex-ratio indicates a continual decrease in the catchability of female prawn through the fishing season; however, whether this is caused by depletion via fishing mortality or migratory behaviour is yet to be resolved. Here, we provide a comprehensive baseline evaluation of population biology and discuss the implications of our findings for fisheries management.


Sign in / Sign up

Export Citation Format

Share Document