smoke particles
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 58)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 39 (6) ◽  
pp. 1055-1068
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

Abstract. We investigate if the presence of meteoric smoke particles (MSPs) influences the electron temperature during artificial heating in the D-region. By transferring the energy of powerful high-frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. Artificial heating depends on the height variation of electron density. The presence of MSPs can influence the electron density through charging of MSPs by electrons, which can reduce the number of free electrons and even result in height regions with strongly reduced electron density, so-called electron bite-outs. We simulate the influence of the artificial heating by calculating the intensity of the upward-propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSPs is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSPs, singly positively and singly negatively charged MSPs, and photochemistry such as photoionization and photodetachment. We apply typical ionospheric conditions and find that MSPs can influence both the magnitude and the height profile of the heated electron temperature above 80 km; however, this depends on ionospheric conditions. During night, the presence of MSPs leads to more efficient heating and thus a higher electron temperature above altitudes of 80 km. We found differences of up to 1000 K in electron temperature for calculations with and without MSPs. When MSPs are present, the heated electron temperature decreases more slowly. The presence of MSPs does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSPs and without MSPs is less than 25 K. We also investigate model runs using MSP number density profiles for autumn, summer and winter. The night-time electron temperature is expected to be 280 K hotter in autumn than during winter conditions, while the sunlit D-region is 8 K cooler for autumn MSP conditions than for the summer case, depending on altitude. Finally, an investigation of the electron attachment efficiency to MSPs shows a significant impact on the amount of chargeable dust and consequently on the electron temperature.


2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Boris Barja ◽  
Holger Baars ◽  
...  

<p>The highlight of our multiwavelength polarization Raman lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the Arctic Ocean ice from October 2019 to May 2020 was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS) with clear and unambiguous wild-fire smoke signatures. The smoke is supposed to originate from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process.</p><p>Temporally almost parallelly, record-breaking wildfires accompanied by unprecedentedly strong pyroconvection were raging in the south-eastern part of Australia in late December 2019 and early January 2020. These fires injected huge amounts of biomass-burning smoke into the stratosphere where the smoke particles became distributed over the entire southern hemispheric in the UTLS regime from 10-30 km to even 35 km height. The stratospheric smoke layer was monitored with our Raman lidar in Punta Arenas (53.2°S, 70.9°W, Chile, southern South America) for two years.</p><p>The fact that these two events in both hemispheres coincided with record-breaking ozone hole events in both hemispheres in the respective spring seasons motivated us to discuss a potential impact of the smoke particles on the strong ozone depletion. The discussion is based on the overlapping height ranges of the smoke particles, polar stratospheric clouds, and the ozone hole regions. It is well known that strong ozone reduction is linked to the development of a strong and long-lasting polar vortex, which favours increased PSC formation. In these clouds, active chlorine components are produced via heterogeneous chemical processes on the surface of the PSC particles. Finally, the chlorine species destroy ozone molecules in the spring season. However, there are two pathways to influence ozone depletion by aerosol pollution. The particles can influence the evolution of PSCs and specifically their microphysical properties (number concentration and size distribution), and on the other hand, the particles can be directly involved in heterogeneous chemical processes by increasing the particle surface area available to convert nonreactive chlorine components into reactive forms. A third (indirect) impact of smoke, when well distributed over large parts of the Northern or Southern hemispheres, is via the influence on large-scale atmospheric dynamics.</p><p>We will show our long-term smoke lidar observations in the central Arctic and in Punta Arenas as well as ozone profile measurements during the ozone-depletion seasons. Based on these aerosol and ozone profile data we will discuss the potential interaction between smoke and ozone.</p>


2021 ◽  
Vol 2145 (1) ◽  
pp. 012020
Author(s):  
P Tangjitsomboon ◽  
D Ngamrungroj ◽  
R Mongkolnavin

Abstract Particulate matters (PM) in air pollution have been known to be the cause of respiratory diseases. Many researchers have investigated methods of trapping the particulate matter. In this work, the trapping of smoke particles generated from a joss stick by using a dielectric barrier discharge (DBD) system operated under the atmospheric pressure condition was investigated. DBD system consists of an inner electrode which is made of aluminum wire filaments that are placed inside the acrylic cylindrical tube, and the outer electrode is made of metallic wrap around the tube. The electrodes were connected to a 50 Hz high voltage AC source which was adjusted to 0 V, 5kV, 7kV, and 10kV. A ventilating fan was used for draining the smoke particle from the joss stick through the inner electrode with an airflow velocity of 2.68 m/s. The effect of electric field and plasma trapping the smoke particles was investigated. Results from the experiment were further compared with a study by simulation. It was found that the smoke particle density measured by applying an electric potential difference of 0 V and 5 kV was similar; both conditions showed the highest smoke density values. On the other hand, when the electric potential difference was adjusted to 7 kV and 10kV, it was found that the smoke particles density decreased by 90%. The experiment also illustrated when the electric potential difference was increased high enough such that plasma was produced at 7 kV and 10 kV, the smoke particle density released from the tube was similar. Nevertheless, when comparing the mass of particles collected from the inner electrode with the plasma condition, it was found that the mass collected increased more than the operating condition with an electric potential difference of 0 kV and 5 kV without plasma.


2021 ◽  
Vol 9 ◽  
Author(s):  
Albert Ansmann ◽  
Kevin Ohneiser ◽  
Alexandra Chudnovsky ◽  
Holger Baars ◽  
Ronny Engelmann

In August 2019, a 4-km thick wildfire smoke layer was observed in the lower stratosphere over Leipzig, Germany, with a ground-based multiwavelength Raman lidar. The smoke was identified by the smoke-specific spectral dependence of the extinction-to-backscatter ratio (lidar ratio) measured with the Raman lidar. The spaceborne CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) detected the smoke and classified it as sulfate aerosol layer (originating from the Raikoke volcanic eruption). In this article, we discuss the reason for this misclassification. Two major sources for stratospheric air pollution were active in the summer of 2019 and complicated the CALIPSO aerosol typing effort. Besides intense forest fires at mid and high northern latitudes, the Raikoke volcano erupted in the Kuril Islands. We present two cases observed at Leipzig, one from July 2019 and one from August 2019. In July, pure volcanic sulfate aerosol layers were found in the lower stratosphere, while in August, wildfire smoke dominated in the height range up to 4–5 km above the local tropopause. In both cases, the CALIPSO aerosol typing scheme classified the layers as sulfate aerosol layers. The aerosol identification algorithm assumes non-spherical smoke particles in the stratosphere as consequence of fast lifting by pyrocumulonimbus convection. However, we hypothesize (based on presented simulations) that the smoke ascended as a results of self-lifting and reached the tropopause within 2–7 days after emission and finally entered the lower stratosphere as aged spherical smoke particles. These sphercial particles were then classified as liquid sulfate particles by the CALIPSO data analysis scheme. We also present a successful case of smoke identification by the CALIPSO retrieval method.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Stephanie M Holm ◽  
John Balmes

Pollution from landscape fires, which are increasing with climate change, leads to babies being born with lower birthweights in low- and middle-income countries.


2021 ◽  
Vol 14 (9) ◽  
pp. 6159-6179
Author(s):  
Xiaoxia Shang ◽  
Tero Mielonen ◽  
Antti Lipponen ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. A quantitative comparison study for Raman lidar and ceilometer observations, and for model simulations of mass concentration estimates of smoke particles is presented. Layers of biomass burning aerosol particles were observed in the lower troposphere, at 2 to 5 km height on 4 to 6 June 2019, over Kuopio, Finland. These long-range-transported smoke particles originated from a Canadian wildfire event. The most pronounced smoke plume detected on 5 June was intensively investigated. Optical properties were retrieved from the multi-wavelength Raman polarization lidar PollyXT. Particle linear depolarization ratios (PDRs) of this plume were measured to be 0.08±0.02 at 355 nm and 0.05±0.01 at 532 nm, suggesting the presence of partly coated soot particles or particles that have mixed with a small amount of dust or other non-spherical aerosol type. The layer-mean PDR at 355 nm (532 nm) decreased during the day from ∼0.11 (0.06) in the morning to ∼0.05 (0.04) in the evening; this decrease with time could be linked to the particle aging and related changes in the smoke particle shape properties. Lidar ratios were derived as 47±5 sr at 355 nm and 71±5 sr at 532 nm. A complete ceilometer data processing for a Vaisala CL51 ceilometer is presented from a sensor-provided attenuated backscatter coefficient to particle mass concentration (including the water vapor correction for high latitude for the first time). Aerosol backscatter coefficients (BSCs) were measured at four wavelengths (355, 532, 1064 nm from PollyXT and 910 nm from CL51). Two methods, based on a combined lidar and sun-photometer approach, are applied for mass concentration estimations from both PollyXT and the ceilometer CL51 observations. In the first method, no. 1, we used converted BSCs at 532 nm (from measured BSCs) by corresponding measured backscatter-related Ångström exponents, whereas in the second method, no. 2, we used measured BSCs at each wavelength independently. A difference of ∼12 % or ∼36 % was found between PollyXT and CL51 estimated mass concentrations using method no. 1 or no. 2, showing the potential of mass concentration estimates from a ceilometer. Ceilometer estimations have an uncertainty of ∼50 % in the mass retrieval, but the potential of the data lies in the great spatial coverage of these instruments. The mass retrievals were compared with the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorological and aerosol reanalysis. The inclusion of dust (as indicated by MERRA-2 data) in the retrieved mass concentration is negligible considering the uncertainties, which also shows that ceilometer observations for mass retrievals can be used even without exact knowledge of the composition of the smoke-dominated aerosol plume in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document