Abstract
Background: Astragaloside IV (ASIV) is one of the saponins isolated from Astragalus membranaceus, a widely used traditional Chinese medicine and a health product sold all over the world. However, so far, the effect of ASIV on GABAergic synaptic transmission has not been elucidated yet. In the present study, the effect of ASIV on memory and hippocampal GABAergic synaptic transmission was investigated in wild type and early growth response protein 1 (EGR-1) knockout mice. Methods: Behavioral tests including radial-arm maze test and shuttle-box test, liquid chromatography-tandem mass spectrometry, western blotting analysis, quantitative PCR, electrophysiological recording, and electron microscopy were used in this study. Results: ASIV was shown to enhance the learning and memory of mice in behavioral tests, such as radial-arm maze test and shuttle-box test. It significantly reduced the concentration of GABA, the expression of glutamate decarboxylase 2 (GAD65) as well as the ratio of inhibitory synapses in mouse hippocampus, which was accompanied with a suppression of hippocampal spontaneous inhibitory postsynaptic currents. ASIV administration decreased the expression of EGR-1, brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in the hippocampus. Furthermore, blockage of BDNF/TrkB signaling with K-252a abrogated the effect of ASIV on GAD65 expression. When EGR-1 was knocked out, the promotive effects of ASIV on learning and memory, as well as the inhibitory effects on GABAergic synaptic transmission and GAD65, BDNF and TrkB expression, were abolished. In addition, ASIV was found to down-regulate the pre-existing EGR-1 baseline to better adapt to the learning stimuli. Conclusions: Together, these results demonstrated a novel role of ASIV in enhancing memory and reducing hippocampal GABAergic synaptic transmission through EGR-1 mediated BDNF/TrkB signaling pathway in mice.