supply voltage scaling
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1718
Author(s):  
Neha Gupta ◽  
Ambika Prasad Shah ◽  
Sajid Khan ◽  
Santosh Kumar Vishvakarma ◽  
Michael Waltl ◽  
...  

This paper proposes an error-tolerant reconfigurable VDD (R-VDD) scaled SRAM architecture, which significantly reduces the read and hold power using the supply voltage scaling technique. The data-dependent low-power 10T (D2LP10T) SRAM cell is used for the R-VDD scaled architecture with the improved stability and lower power consumption. The R-VDD scaled SRAM architecture is developed to avoid unessential read and hold power using VDD scaling. In this work, the cells are implemented and analyzed considering a technologically relevant 65 nm CMOS node. We analyze the failure probability during read, write, and hold mode, which shows that the proposed D2LP10T cell exhibits the lowest failure rate compared to other existing cells. Furthermore, the D2LP10T cell design offers 1.66×, 4.0×, and 1.15× higher write, read, and hold stability, respectively, as compared to the 6T cell. Moreover, leakage power, write power-delay-product (PDP), and read PDP has been reduced by 89.96%, 80.52%, and 59.80%, respectively, compared to the 6T SRAM cell at 0.4 V supply voltage. The functional improvement becomes even more apparent when the quality factor (QF) is evaluated, which is 458× higher for the proposed design than the 6T SRAM cell at 0.4 V supply voltage. A significant improvement of power dissipation, i.e., 46.07% and 74.55%, can also be observed for the R-VDD scaled architecture compared to the conventional array for the respective read and hold operation at 0.4 V supply voltage.


2021 ◽  
Author(s):  
T. Santosh Kumar ◽  
Suman Lata Tripathi

Abstract The SRAM cells are used in many applications where power consumption will be the main constraint. The Conventional 6T SRAM cell has reduced stability and more power consumption when technology is scaled resulting in supply voltage scaling, so other alternative SRAM cells from 7T to 12T have been proposed which can address these problems. Here a low power 7T SRAM cell is suggested which has low power consumption and condensed leakage currents and power dissipation. The projected design has a leakage power of 5.31nW and leakage current of 7.58nA which is 84.9% less than the 7T SRAM cell without using the proposed leakage reduction technique and it is 22.4% better than 6T SRAM and 22.1% better than 8T SRAM cell when both use the same leakage reduction technique. The cell area of the 7T SRAM cell is 1.25µM2, 6T SRAM is 1.079µM2 and that of 8T SRAM is 1.28µM2all the results are simulated in cadence virtuoso using 18nm technology.


2016 ◽  
Vol 84 (3) ◽  
pp. 413-424 ◽  
Author(s):  
Yanxiang Huang ◽  
Meng Li ◽  
Chunshu Li ◽  
Peter Debacker ◽  
Liesbet Van der Perre

2014 ◽  
Vol 11 (18) ◽  
pp. 20140733-20140733 ◽  
Author(s):  
Kangyeob Park ◽  
Bong Chan Kim ◽  
Byunghoo Jung ◽  
Won-Seok Oh

2013 ◽  
Vol 7 (3) ◽  
pp. 1155-1165
Author(s):  
Dayadi Lakshmaiah ◽  
Dr. M.V. Subramanyam ◽  
Dr. K.Sathya Prasad

This paper process a novel design for low power 1-bit CMOS full adder using XNOR and MUX, with reduced number of transistors using GDI cell. The circuits were simulated with supply voltage scaling from 1.2V to 0.6V &0.6V to 0.3V. To achieve the desired performance of power delay product, area, capacitance the transistors with low threshold voltage were used at critical paths and high threshold voltage at non critical paths. The results show the efficiency of the proposed technique in terms of power consumption, delay and area.


Sign in / Sign up

Export Citation Format

Share Document