cytoplasmic injection
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jason C. Lin ◽  
Alison L. Van Eenennaam

The introduction of genome editing reagents into mammalian zygotes has traditionally been accomplished by cytoplasmic or pronuclear microinjection. This time-consuming procedure requires expensive equipment and a high level of skill. Electroporation of zygotes offers a simplified and more streamlined approach to transfect mammalian zygotes. There are a number of studies examining the parameters used in electroporation of mouse and rat zygotes. Here, we review the electroporation conditions, timing, and success rates that have been reported for mice and rats, in addition to the few reports about livestock zygotes, specifically pigs and cattle. The introduction of editing reagents at, or soon after, fertilization can help reduce the rate of mosaicism, the presence of two of more genotypes in the cells of an individual; as can the introduction of nuclease proteins rather than mRNA encoding nucleases. Mosaicism is particularly problematic in large livestock species with long generation intervals as it can take years to obtain non-mosaic, homozygous offspring through breeding. Gene knockouts accomplished via the non-homologous end joining pathway have been more widely reported and successfully accomplished using electroporation than have gene knock-ins. Delivering large DNA plasmids into the zygote is hindered by the zona pellucida (ZP), and the majority of gene knock-ins accomplished by electroporation have been using short single stranded DNA (ssDNA) repair templates, typically less than 1 kb. The most promising approach to deliver larger donor repair templates of up to 4.9 kb along with genome editing reagents into zygotes, without using cytoplasmic injection, is to use recombinant adeno-associated viruses (rAAVs) in combination with electroporation. However, similar to other methods used to deliver clustered regularly interspaced palindromic repeat (CRISPR) genome-editing reagents, this approach is also associated with high levels of mosaicism. Recent developments complementing germline ablated individuals with edited germline-competent cells offer an approach to avoid mosaicism in the germline of genome edited founder lines. Even with electroporation-mediated delivery of genome editing reagents to mammalian zygotes, there remain additional chokepoints in the genome editing pipeline that currently hinder the scalable production of non-mosaic genome edited livestock.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Masahiro Sato ◽  
◽  
Hansol Jin ◽  
Eri Akasaka ◽  
Kazuchika Miyoshi

The production of genetically modified (GM) pigs is considered valuable in biomedical research for the development of model animals for various diseases and pigs with resistance against viral infection. The porcine genome may be modified using several methods, such as somatic cell nuclear transfer (SCNT) using GM cells as the SCNT donor, direct injection of the transgene or the genome editing components (GEC) into fertilized eggs referred to as zygotes, the in vitro electroporation (EP) of the zygotes in the presence of GECs, viral infection using retroviruses, injection of the GECs into the SCNT-treated embryos, and the in vitro EP of the SCNT-treated embryos in the presence of GECs. In our previous study, we administered a cytoplasmic injection of CRISPR/Cas9-based GEC into parthenogenetically-activated porcine oocytes (referred to as parthenotes) and observed that these oocytes comprised a mixture of genome-edited and genome-unedited cells, referred to as the “mosaic”. In contrast, when in vitro EP of the SCNT-treated embryos in the presence of GEC was performed, bi-allelic knock out (KO) of the target gene was detected in most oocytes (82%; 9/11). The production of bi-allelic KO piglets is particularly beneficial for investigating GM domestic animals as it does not require further breeding trials to obtain bi-allelic KO individuals, which would otherwise be a time-consuming and laborious task. In this context, the present study was aimed to confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos without multiple breeding trials, for which parthenotes were subjected to EP in the presence of a ribonucleoprotein containing Cas9 protein and single-guide RNA (targeted toward GGTA1). The treated embryos were cultured until they transformed into blastocysts. The genomic DNA isolated from these blastocysts was used for molecular biology analysis to detect the possible insertion and deletion of sequences (indels) at the GGTA1 locus. Among the 32 blastocysts obtained, 21 (66%) were observed to be the bi-allelic KO ones. The remaining embryos either had a normal phenotype (25%; 8/32) or mosaic mutations (9%; 3/32). These findings confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Masahiro Sato ◽  
◽  
Hansol Jin ◽  
Eri Akasaka ◽  
Kazuchika Miyoshi

The production of genetically modified (GM) pigs is considered valuable in biomedical research for the development of model animals for various diseases and pigs with resistance against viral infection. The porcine genome may be modified using several methods, such as somatic cell nuclear transfer (SCNT) using GM cells as the SCNT donor, direct injection of the transgene or the genome editing components (GEC) into fertilized eggs referred to as zygotes, the in vitro electroporation (EP) of the zygotes in the presence of GECs, viral infection using retroviruses, injection of the GECs into the SCNT-treated embryos, and the in vitro EP of the SCNT-treated embryos in the presence of GECs. In our previous study, we administered a cytoplasmic injection of CRISPR/Cas9-based GEC into parthenogenetically-activated porcine oocytes (referred to as parthenotes) and observed that these oocytes comprised a mixture of genome-edited and genome-unedited cells, referred to as the “mosaic”. In contrast, when in vitro EP of the SCNT-treated embryos in the presence of GEC was performed, bi-allelic knock out (KO) of the target gene was detected in most oocytes (82%; 9/11). The production of bi-allelic KO piglets is particularly beneficial for investigating GM domestic animals as it does not require further breeding trials to obtain bi-allelic KO individuals, which would otherwise be a time-consuming and laborious task. In this context, the present study was aimed to confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos without multiple breeding trials, for which parthenotes were subjected to EP in the presence of a ribonucleoprotein containing Cas9 protein and single-guide RNA (targeted toward GGTA1). The treated embryos were cultured until they transformed into blastocysts. The genomic DNA isolated from these blastocysts was used for molecular biology analysis to detect the possible insertion and deletion of sequences (indels) at the GGTA1 locus. Among the 32 blastocysts obtained, 21 (66%) were observed to be the bi-allelic KO ones. The remaining embryos either had a normal phenotype (25%; 8/32) or mosaic mutations (9%; 3/32). These findings confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos.


2020 ◽  
Vol 21 (10) ◽  
pp. 3604 ◽  
Author(s):  
Alexey Korablev ◽  
Varvara Lukyanchikova ◽  
Irina Serova ◽  
Nariman Battulin

Genome engineering has been tremendously affected by the appearance of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based approach. Initially discovered as an adaptive immune system for prokaryotes, the method has rapidly evolved over the last decade, overtaking multiple technical challenges and scientific tasks and becoming one of the most effective, reliable, and easy-to-use technologies for precise genomic manipulations. Despite its undoubtable advantages, CRISPR/Cas9 technology cannot ensure absolute accuracy and predictability of genomic editing results. One of the major concerns, especially for clinical applications, is mutations resulting from error-prone repairs of CRISPR/Cas9-induced double-strand DNA breaks. In some cases, such error-prone repairs can cause unpredicted and unplanned large genomic modifications within the CRISPR/Cas9 on-target site. Here we describe the largest, to the best of our knowledge, undesigned on-target deletion with a size of ~293 kb that occurred after the cytoplasmic injection of CRISPR/Cas9 system components into mouse zygotes and speculate about its origin. We suppose that deletion occurred as a result of the truncation of one of the ends of a double-strand break during the repair.


2019 ◽  
Vol 31 (1) ◽  
pp. 226
Author(s):  
V. Savy ◽  
R. J. Bevacqua ◽  
N. G. Canel ◽  
V. Alberio ◽  
L. D. Ratner ◽  
...  

Precise DNA modification is a crucial approach for gene function elucidation, biomedical model development, and transgenic bioreactor generation. In livestock, its application was extremely challenging until the development of engineered nucleases such as zinc-finger nucleases, transcription activator-like effector nucleases (TALEN), and CRISPR/Cas9. Still, precise knock-in (KI) techniques remain inefficient. Recently, the homology-independent target integration (HITI) strategy was developed, allowing precise insertion of transgenes in mammalian cells in an easier fashion. The HITI technique allows site-specific gene insertion by means of cleavage of both the target sequence in the genome and the donor plasmid, followed by DNA repair by nonhomologous end joining. Here, we evaluated the use of TALENs to generate precise knockout (KO) alleles of the β-casein gene (CSN2) by creating small insertions or deletions, and precise insertion of recombinant human factor IX (rhFIX) under bovine CSN2 regulatory sequences, using HITI via cytoplasmic injection of bovine IVF zygotes. First, 2 TALEN pairs (Tn1 and Tn2) targeting exon 2 of bovine CSN2 were designed and their activity was confirmed by primary fibroblasts transfection followed by Surveyor assay at Day 3. Then, both TALEN pairs were evaluated for KO embryo generation by zygote cytoplasmic injection of in vitro-transcribed mRNA encoding for Tn1, Tn2, or a mix containing Tn1+Tn2, at 100ng μL−1. A non-injected control (NIC) was also included. Embryos were in vitro cultured until Day 7 and independently analysed by whole-genome amplification followed by PCR and sequencing. Neither the blastocyst rate [28.8% (n=73), 33.8% (n=71), 32.4% (n=74), and 54.3% (n=127) for Tn1, Tn2, Tn1+Tn2, and NIC, respectively] nor the proportion of edited embryos [44% (n=9), 20% (n=10), and 33% (n=9) for Tn1, Tn2, and Tn1+Tn2, respectively] differed between injected groups (Fisher test, P<0.05), demonstrating efficient editing in bovine embryos by TALENs. Finally, to achieve precise CSN2 KI embryos, the rhFIX open reading frame was PCR amplified with a forward primer containing the Tn1 recognition sequence to obtain the HITI donor and bovine IVF zygotes were co-injected with the Tn1 mRNA and the HITI donor. Embryos were in vitro cultured until Day 7 and individually analysed by nested PCR at both the 5′ and 3′ ends of HITI donor. The PCR-based results indicate HITI donor integration in 7% of embryos analysed (n=14). Sanger sequencing analysis is currently in progress to confirm site-specific integration of HITI and possible rearranged DNA integration in other embryos. To our knowledge, this is the first report on the use of TALEN and HITI for gene modification. Our results indicate that TALEN combined with HITI may constitute an easy strategy for precise production of pharmaceuticals in the milk of livestock.


2018 ◽  
Vol 1 (1) ◽  
pp. 5 ◽  
Author(s):  
Brendan Doe ◽  
Ellen Brown ◽  
Katharina Boroviak

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174025 ◽  
Author(s):  
R. J. Bevacqua ◽  
R. Fernandez-Martin ◽  
N. G. Canel ◽  
A. Gibbons ◽  
D. Texeira ◽  
...  

2016 ◽  
Vol 51 (4) ◽  
pp. 501-508 ◽  
Author(s):  
CG Luchetti ◽  
RJ Bevacqua ◽  
MS Lorenzo ◽  
MF Tello ◽  
M Willis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document