microwave bursts
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 0)

H-INDEX

21
(FIVE YEARS 0)

2017 ◽  
pp. 3-12
Author(s):  
Виктор Гречнев ◽  
Victor Grechnev ◽  
Валентин Киселев ◽  
Valentin Kiselev ◽  
Наталия Мешалкина ◽  
...  

We analyze the relations between various combinations of peak fluxes and fluences of solar microwave bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990–2015, and corresponding parameters of proton enhancements with E>100 MeV exceeding 0.1 pfu registered by GOES monitors in near-Earth environment. The highest correlation has been found between the microwave and proton fluences. This fact reflects a dependence of the total number of protons on the total duration of the acceleration process. In the events with strong flares, the correlation coefficients of proton fluences with microwave and soft X-ray fluences are higher than those with speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to acceleration of high-energy protons. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution probably prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux and duration of a microwave burst. This can be used for diagnostics of proton enhancements based on microwave observations.


2017 ◽  
Vol 3 (3) ◽  
pp. 3-14
Author(s):  
Виктор Гречнев ◽  
Victor Grechnev ◽  
Валентин Киселев ◽  
Valentin Kiselev ◽  
Наталия Мешалкина ◽  
...  

We analyze the relations between various combinations of peak fluxes and fluences of solar microwave bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990–2015, and corresponding parameters of proton enhancements with E>100 MeV exceeding 0.1 pfu registered by GOES monitors in near-Earth environment. The highest correlation has been found between the microwave and proton fluences. This fact reflects a dependence of the total number of protons on the total duration of the acceleration process. In the events with strong flares, the correlation coefficients of proton fluences with microwave and soft X-ray fluences are higher than those with speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to acceleration of high-energy protons. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution probably prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux and duration of the microwave burst, that can be used for diagnostics of proton enhancements based on microwave observations.


Author(s):  
S.N. Darovskikh ◽  
Yu.S. Shishkova ◽  
N.V. Vdovina ◽  
N.N. Gudaev ◽  
V.N. Bagaev ◽  
...  

2017 ◽  
Vol 7 ◽  
pp. A2 ◽  
Author(s):  
Carolina Salas Matamoros ◽  
Karl Ludwig Klein ◽  
Gerard Trottet

The propagation of a coronal mass ejection (CME) to the Earth takes between about 15 h and several days. We explore whether observations of non-thermal microwave bursts, produced by near-relativistic electons via the gyrosynchrotron process, can be used to predict travel times of interplanetary coronal mass ejections (ICMEs) from the Sun to the Earth. In a first step, a relationship is established between the CME speed measured by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SoHO/LASCO) near the solar limb and the fluence of the microwave burst. This relationship is then employed to estimate speeds in the corona of earthward-propagating CMEs. These speeds are fed into a simple empirical interplanetary acceleration model to predict the speed and arrival time of the ICMEs at Earth. The predictions are compared with observed arrival times and with the predictions based on other proxies, including soft X-rays (SXR) and coronographic measurements. We found that CME speeds estimated from microwaves and SXR predict the ICME arrival at the Earth with absolute errors of 11 ± 7 and 9 ± 7 h, respectively. A trend to underestimate the interplanetary travel times of ICMEs was noted for both techniques. This is consistent with the fact that in most cases of our test sample, ICMEs are detected on their flanks. Although this preliminary validation was carried out on a rather small sample of events (11), we conclude that microwave proxies can provide early estimates of ICME arrivals and ICME speeds in the interplanetary space. This method is limited by the fact that not all CMEs are accompanied by non-thermal microwave bursts. But its usefulness is enhanced by the relatively simple observational setup and the observation from ground, which makes the instrumentation less vulnerable to space weather hazards.


Solar Physics ◽  
2016 ◽  
Vol 291 (12) ◽  
pp. 3619-3635 ◽  
Author(s):  
Q. W. Song ◽  
H. Nakajima ◽  
G. L. Huang ◽  
B. L. Tan ◽  
Y. Huang ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 15-27 ◽  
Author(s):  
Дмитрий Жданов ◽  
Dmitriy Zhdanov ◽  
Сергей Лесовой ◽  
Sergey Lesovoi ◽  
Сусанна Тохчукова ◽  
...  

Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies.


2016 ◽  
Vol 2 (2) ◽  
pp. 12-21
Author(s):  
Дмитрий Жданов ◽  
Dmitriy Zhdanov ◽  
Сергей Лесовой ◽  
Sergey Lesovoi ◽  
Сусанна Тохчукова ◽  
...  

Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.


Solar Physics ◽  
2015 ◽  
Vol 290 (10) ◽  
pp. 2827-2855 ◽  
Author(s):  
V. V. Grechnev ◽  
V. I. Kiselev ◽  
N. S. Meshalkina ◽  
I. M. Chertok

Sign in / Sign up

Export Citation Format

Share Document