With the advent of the digital music era, digital audio sources have exploded. Music classification (MC) is the basis of managing massive music resources. In this paper, we propose a MC method based on deep learning to improve feature extraction and classifier design based on MIDI (musical instrument digital interface) MC task. Considering that the existing classification technology is limited by the shallow structure, it is difficult for the classifier to learn the time sequence and semantic information of music; this paper proposes a MIDIMC method based on deep learning. In the experiment, we use the MC method proposed in this paper to achieve 90.1% classification accuracy, which is better than the existing classification method based on BP neural network, and verify the music with its classification accuracy. The key point is that the music division method used in this paper has correct MC efficiency. However, due to the limited ability and time involved in the interdisciplinary field, the methodology of this paper has certain limitations, which still needs further research and improvement.