littlewood maximal operator
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Emiel Lorist ◽  
Zoe Nieraeth

AbstractWe prove that scalar-valued sparse domination of a multilinear operator implies vector-valued sparse domination for tuples of quasi-Banach function spaces, for which we introduce a multilinear analogue of the $${{\,\mathrm{UMD}\,}}$$ UMD condition. This condition is characterized by the boundedness of the multisublinear Hardy-Littlewood maximal operator and goes beyond examples in which a $${{\,\mathrm{UMD}\,}}$$ UMD condition is assumed on each individual space and includes e.g. iterated Lebesgue, Lorentz, and Orlicz spaces. Our method allows us to obtain sharp vector-valued weighted bounds directly from scalar-valued sparse domination, without the use of a Rubio de Francia type extrapolation result. We apply our result to obtain new vector-valued bounds for multilinear Calderón-Zygmund operators as well as recover the old ones with a new sharp weighted bound. Moreover, in the Banach function space setting we improve upon recent vector-valued bounds for the bilinear Hilbert transform.


Author(s):  
Carlos Pérez ◽  
Eduard Roure-Perdices

AbstractThe Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type estimate $$\begin{aligned} \left\| \frac{Mf}{v}\right\| _{L^{1,\infty }(uv)} \le C_{u,v} \Vert f \Vert _{L^{1}(u)}, \end{aligned}$$ Mf v L 1 , ∞ ( u v ) ≤ C u , v ‖ f ‖ L 1 ( u ) , where $$u\in A_1$$ u ∈ A 1 and $$uv\in A_{\infty }$$ u v ∈ A ∞ . We prove a novel extension of this result to the general restricted weak type case. That is, for $$p>1$$ p > 1 , $$u\in A_p^{{\mathcal {R}}}$$ u ∈ A p R , and $$uv^p \in A_\infty $$ u v p ∈ A ∞ , $$\begin{aligned} \left\| \frac{Mf}{v}\right\| _{L^{p,\infty }(uv^p)} \le C_{u,v} \Vert f \Vert _{L^{p,1}(u)}. \end{aligned}$$ Mf v L p , ∞ ( u v p ) ≤ C u , v ‖ f ‖ L p , 1 ( u ) . From these estimates, we deduce new weighted restricted weak type bounds and Sawyer-type inequalities for the m-fold product of Hardy-Littlewood maximal operators. We also present an innovative technique that allows us to transfer such estimates to a large class of multi-variable operators, including m-linear Calderón-Zygmund operators, avoiding the $$A_\infty $$ A ∞ extrapolation theorem and producing many estimates that have not appeared in the literature before. In particular, we obtain a new characterization of $$A_p^{{\mathcal {R}}}$$ A p R . Furthermore, we introduce the class of weights that characterizes the restricted weak type bounds for the multi(sub)linear maximal operator $${\mathcal {M}}$$ M , denoted by $$A_{\mathbf {P}}^{{\mathcal {R}}}$$ A P R , establish analogous bounds for sparse operators and m-linear Calderón-Zygmund operators, and study the corresponding multi-variable Sawyer-type inequalities for such operators and weights. Our results combine mixed restricted weak type norm inequalities, $$A_p^{{\mathcal {R}}}$$ A p R and $$A_{\mathbf {P}}^{{\mathcal {R}}}$$ A P R weights, and Lorentz spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 946
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

In this paper, we introduce and study the Hardy–Littlewood maximal operator MG→ on a finite directed graph G→. We obtain some optimal constants for the ℓp norm of MG→ by introducing two classes of directed graphs.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Toru Nogayama ◽  
Yoshihiro Sawano

AbstractThis work extends the theory of Rychkov, who developed the theory of $A_{p}^{\mathrm{loc}}$ A p loc weights. It also extends the work by Cruz-Uribe SFO, Fiorenza, and Neugebauer. The class $A_{p(\cdot )}^{\mathrm{loc}}$ A p ( ⋅ ) loc is defined. The weighted inequality for the local Hardy–Littlewood maximal operator on Lebesgue spaces with variable exponents is proven. Cruz-Uribe SFO, Fiorenza, and Neugebauer considered the Muckenhoupt class for Lebesgue spaces with variable exponents. However, due to the setting of variable exponents, a new method for extending weights is needed. The proposed extension method differs from that by Rychkov. A passage to the vector-valued inequality is realized by means of the extrapolation technique. This technique is an adaptation of the work by Cruz-Uribe and Wang. Additionally, a theory of extrapolation adapted to our class of weights is also obtained.


2021 ◽  
pp. 109037
Author(s):  
Cristian González-Riquelme ◽  
Dariusz Kosz

Author(s):  
S.H. Saker ◽  
R.P. Agarwal

In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete Ap-Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on lpw (Z+). The results will be proved by employing the self-improving property of the discrete Ap-Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.


2021 ◽  
Vol 7 (1) ◽  
pp. 1000-1014
Author(s):  
Suixin He ◽  
◽  
Shuangping Tao

<abstract><p>The aim of this paper is to obtain the boundedness of some operator on grand generalized Morrey space $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $ over non-homogeneous spaces, where $ G\subset $ $ \mathbb{R}^{n} $ is a bounded domain. Under assumption that functions $ \varphi $ and $ \phi $ satisfy certain conditions, the authors prove that the Hardy-Littlewood maximal operator, fractional integral operators and $ \theta $-type Calderón-Zygmund operators are bounded on the non-homogeneous grand generalized Morrey space $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $. Moreover, the boundedness of commutator $ [b, T^{G}_{\theta}] $ which is generated by $ \theta $-type Calderón-Zygmund operator $ T_{\theta} $ and $ b\in\mathrm{RBMO}(\mu) $ on spaces $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $ is also established.</p></abstract>


2020 ◽  
Vol 8 (1) ◽  
pp. 261-267
Author(s):  
Yoshihiro Sawano

AbstractThe aim of this paper is to prove the weak type vector-valued inequality for the modified Hardy– Littlewood maximal operator for general Radon measure on ℝn. Earlier, the strong type vector-valued inequality for the same operator and the weak type vector-valued inequality for the dyadic maximal operator were obtained. This paper will supplement these existing results by proving a weak type counterpart.


Sign in / Sign up

Export Citation Format

Share Document