pressurized liquid extraction
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 91)

H-INDEX

58
(FIVE YEARS 8)

2022 ◽  
Vol 61 ◽  
pp. 102586
Author(s):  
María J. Jiménez Callejón ◽  
Alfonso Robles Medina ◽  
María D. Macías Sánchez ◽  
Pedro A. González Moreno ◽  
Elvira Navarro López ◽  
...  

Author(s):  
János Béri ◽  
Sára Nagy ◽  
Ádám Kolay Kovács ◽  
Erika Vági ◽  
Edit Székely

The first semi-continuous Pressurized Liquid Extraction (PLE) of hemp threshing residue with ethanol was carried out according to a 32 full factorial experimental design with pressure and temperature as independent variables at 8-10-12 MPa and 323-333-343 K, respectively. The total- and cannabidiol (CBD) yield curves were fitted to the modified two-parameter Brunner equation. Best results, concerning CBD, can be achieved at 12 MPa and 343 K. Solvent mass-consumption and operation time were considerably decreased compared to a previous supercritical fluid extraction study on the same material. Furthermore, the concentration profiles were evaluated to study the mass transfer. The winterized dry extracts were further studied in a methanol-hexane-water ternary system concerning CBD distribution ratio, showing high methanol dependency.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6951
Author(s):  
Norelhouda Abderrezag ◽  
Jose David Sánchez-Martínez ◽  
Ouahida Louaer ◽  
Abdeslam-Hassen Meniai ◽  
Jose A. Mendiola

Ammodaucus leucotrichus is a spontaneous plant endemic of the North African region. An efficient selective pressurized liquid extraction (PLE) method was optimized to concentrate neuroprotective extracts from A. leucotrichus fruits. Green solvents were tested, namely ethanol and water, within a range of temperatures between 40 to 180 °C. Total carbohydrates and total phenolics were measured in extracts, as well as in vitro antioxidant capacity (DPPH radical scavenging), anticholinesterase (AChE) and anti-inflammatory (LOX) activities. Metabolite profiling was carried out by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-q-TOF-MS/MS), identifying 94 compounds. Multivariate analysis was performed to correlate composition with bioactivity. A remarkable effect of the temperature using water was observed: the higher temperature, the higher extraction yield, the higher total phenolic content, as well as the higher total carbohydrates content. The water extract obtained at 180 °C, 10.34 MPa and 10 min showed meaningful anti-inflammatory (IC50LOX = 39.4 µg/mL) and neuroprotective activities (IC50AChE = 55.6 µg/mL). The Principal Components Analysis (PCA) and the cluster analysis correlated these activities with the presence of carbohydrates and phenolic compounds.


2021 ◽  
Vol 13 (22) ◽  
pp. 12578
Author(s):  
Vasileios M. Pappas ◽  
Vassilis Athanasiadis ◽  
Dimitrios Palaiogiannis ◽  
Konstantina Poulianiti ◽  
Eleni Bozinou ◽  
...  

Fοllow up with our previous study on the extraction of saffron processing waste polyphenols using deep eutectic solvents, the objective of this examination was a comparative evaluation of pressurized liquid extraction (PLE), stirred-tank extraction (STE) and stirred-tank extraction with ultrasonication pretreatment (STE/UP) with respect to the recovery of pigments and antioxidant polyphenols from saffron processing waste. Aqueous solutions of citric and lactic acids at two different concentrations were used as green solvents. The extracts obtained under the specified conditions were analyzed for total pigment and total polyphenol yields as well as for their ferric-reducing power and antiradical activity. Furthermore, each produced extract was analyzed with liquid chromatography–mass spectrometry to profile its analytical polyphenolic composition. In all cases, PLE provided inferior results compared to the two other techniques, producing extracts with lower polyphenolic concentration and weaker antioxidant properties. On the other hand, no specific pattern was detected concerning the effect of ultrasonication, acid type and acid concentration. Hierarchical cluster analysis indicated that stirred-tank extraction with 1% (w/v) lactic acid and ultrasonication pretreatment might be the highest-performing combination, providing extracts with increased polyphenol and pigment concentration; however, it also enhanced antioxidant activity. It was also concluded that the significantly shorter extraction time when using PLE might be an important element in further optimizing the process, buttressing the use of this technique for the establishment of innovative and sustainable-by-design extraction methodologies.


2021 ◽  
Vol 170 ◽  
pp. 113771
Author(s):  
Kenneth J. Olejar ◽  
John Hatfield ◽  
Collin J. Arellano ◽  
Ana T. Gurau ◽  
Dustin Seifried ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3242
Author(s):  
Gloria Domínguez-Rodríguez ◽  
María Concepción García ◽  
María Luisa Marina ◽  
Merichel Plaza

Sweet cherry generates large amounts of by-products within which pomace can be a source of bioactive phenolic compounds. Commonly, phenolic compounds have been obtained by conventional extraction methodologies. However, a significant fraction, called non-extractable polyphenols (NEPs), stays held in the conventional extraction residues. Therefore, in the present work, the release of NEPs from cherry pomace using pressurized liquid extraction (PLE) combined with enzyme-assisted extraction (EAE) using PromodTM enzyme is investigated for the first time. In order to study the influence of temperature, time, and pH on the NEPs extraction, a response surface methodology was carried out. PLE-EAE extracts displayed higher TPC (75 ± 8 mg GAE/100 g sample) as well as, PA content, and antioxidant capacity than the extracts obtained by PLE (with a TPC value of 14 ± 1 mg GAE/100 g sample) under the same extraction conditions, and those obtained by conventional methods (TPC of 8.30 ± 0.05 mg GAE/100 g sample). Thus, PLE-EAE treatment was more selective and sustainable to release NEPs from sweet cherry pomace compared with PLE without EAE treatment. Besides, size-exclusion chromatography profiles showed that PLE-EAE allowed obtaining NEPs with higher molecular weight (>8000 Da) than PLE alone.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2153
Author(s):  
Jianjun Zhou ◽  
Min Wang ◽  
Celia Carrillo ◽  
Zhenzhou Zhu ◽  
Mladen Brncic ◽  
...  

The research aims to extract nutrients and bioactive compounds from spirulina using a non-toxic, environmentally friendly and efficient method—Pressurized Liquid Extraction (PLE). In this work, Response Surface Methodology (RSM)–Central Composite Design (CCD) was used to evaluate and optimize the extraction time (5–15 min), temperature (20–60 °C) and pH (4–10) during PLE extraction (103.4 bars). The multi-factor optimization results of the RSM-CCD showed that under the pressure of 103.4 bars, the optimal conditions to recover the highest content of bioactive compounds were 10 min, 40 °C and pH 4. Furthermore, the compounds and antioxidant capacity of PLE and non-pressurized extraction extracts were compared. The results showed that under the optimal extraction conditions (10 min, 40 °C and pH 4), PLE significantly improved the antioxidant capacity (2870.5 ± 153.6 µM TE), protein yield (46.8 ± 3.1%), chlorophyll a (1.46 ± 0.04 mg/g), carotenoids (0.12 ± 0.01 mg/g), total polyphenols (11.49 ± 0.04 mg/g) and carbohydrates content (78.42 ± 1.40 mg/g) of the extracts compared with non-pressurized extraction (p < 0.05). The protein molecular distribution of the extracts was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the results showed that there were more small-molecule proteins in PLE extracts. Moreover, Liquid Chromatography Triple Time of Flight Mass Spectrometry (TOF–LC–MS–MS) was used to analyze the phenolic profile of the extracts, and the results showed the extracts were rich on phenolic compounds, such as p-coumaric acid and cinnamic acid being the predominant phenolic compounds in the PLE extract. This indicates that PLE can promote the extraction of bioactive compounds from Spirulina, which is of great significance for the application of PLE technology to obtain active substances from marine algae resources.


Author(s):  
Juliane Viganó ◽  
Ana Carolina de Aguiar ◽  
Priscilla Carvalho Veggi ◽  
Vitor L. Sanches ◽  
Maurício Ariel Rostagno ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kenneth J. Olejar ◽  
Chad A. Kinney

Abstract Background Cannabinoids are increasingly becoming compounds of medical interest. However, cannabis plants only produce carboxylated cannabinoids. In order to access the purported medical benefits of these compounds, the carboxylic acid moiety must be removed. This process is typically performed by heating the plant material or extract; however, cannabinoids being thermolabile can readily degrade, evaporate, or convert to undesired metabolites. Pressurized liquid extraction (PLE) operates using a pseudo-closed system under pressure and temperature. While pressure is maintained at 11 MPa, temperature can be varied from ambient to 200 °C. Methods Temperatures were evaluated (80 to 160 °C) using PLE for the thermo-chemical conversion of cannabinoid acids utilizing water as the solvent in the first step of extraction with subsequent extraction with ethanol. Optimum temperatures were established for the conversion of 6 cannabinoid acids to their neutral cannabinoid forms. Cannabinoid acid conversion was monitored by HPLC. Results The use of PLE for thermo-chemical decarboxylation has resulted in a rapid decarboxylation process taking merely 6 min. The temperatures established here demonstrate statistically significant maxima and minima of cannabinoids and their parent cannabinoid acids. One-way ANOVA analysis shows where individual cannabinoids are statistically different, but the combination of the maxima and minima provides temperatures for optimum thermo-chemical conversion. CBC, CBD, CBDV, and CBG have an optimum temperature of conversion of 140 °C, while THC was 120 °C for 6 min. Discussion Decarboxylation of cannabinoid acids is necessary for conversion to the bioactive neutral form. The pseudo-closed chamber of the PLE makes this an ideal system to rapidly decarboxylate the cannabinoid acids due to pressure and temperature, while minimizing loss typically associated with conventional thermal-decarboxylation. This study established the optimum temperatures for thermo-chemical conversion of the cannabinoid acids in water and provides the groundwork for further development of the technology for industrial scale application.


Sign in / Sign up

Export Citation Format

Share Document