extracellular microenvironment
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Zhang ◽  
Huachong Xu ◽  
Ning Ding ◽  
Xue Li ◽  
Xiaoyin Chen ◽  
...  

Aging and neurodegenerative diseases are frequently associated with the disruption of the extracellular microenvironment, which includes mesenchyme and body fluid components. Caloric restriction (CR) has been recognized as a lifestyle intervention that can improve long-term health. In addition to preventing metabolic disorders, CR has been shown to improve brain health owing to its enhancing effect on cognitive functions or retarding effect on the progression of neurodegenerative diseases. This article summarizes current findings regarding the neuroprotective effects of CR, which include the modulation of metabolism, autophagy, oxidative stress, and neuroinflammation. This review may offer future perspectives for brain aging interventions.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4827
Author(s):  
Tiantian Liu ◽  
Jiansheng Wang ◽  
Yuchen Xiu ◽  
Yujiao Wu ◽  
Dawei Xu

Alterations in global DNA methylation play a critical role in both aging and cancer, and DNA methylation (DNAm) age drift has been implicated in cancer risk and pathogenesis. In the present study, we analyzed the TCGA cohort of papillary and follicular thyroid carcinoma (PTC and FTC) for their DNAm age and association with clinic-pathological features. In 54 noncancerous thyroid (NT) samples, DNAm age was highly correlated with patient chronological age (R2 = 0.928, p = 2.6 × 10−31), but drifted to younger than chronological age in most specimens, especially those from patients >50 years old. DNAm age in 502 tumors was also correlated with patient chronological age, but to a much lesser extent (R2 = 0.403). Highly drifted DNAm age (HDDA) was identified in 161 tumors, among which were 101 with DNAm age acceleration while 60 with DNAm age deceleration. Tumors with HDDA were characterized by the robust aberrations in metabolic activities, extracellular microenvironment components and inflammation/immunology responses, and dedifferentiation. Importantly, HDDA in tumors independently predicted shorter disease-free survival of patients. Collectively, NT thyroids from TC patients have younger DNAm age, while HDDA frequently occurs in TCs, and contributes to the TC progression and poor patient outcomes. HDDA may serve as a new prognostic factor for TCs.


2021 ◽  
Vol 22 (13) ◽  
pp. 6845
Author(s):  
Rebecca L. Pratt

The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.


2021 ◽  
pp. 030098582110055
Author(s):  
Sara Francesca Santagostino ◽  
Charles-Antoine Assenmacher ◽  
James C. Tarrant ◽  
Adeyemi O. Adedeji ◽  
Enrico Radaelli

Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists—such as individual cell apoptosis or necrosis—appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqing Yin ◽  
Anni Pan ◽  
Binlong Chen ◽  
Zenghui Wang ◽  
Mingmei Tang ◽  
...  

AbstractNanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7–28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 522
Author(s):  
Sarah A. Walsh ◽  
Benjamin W. Hoyt ◽  
Cassie J. Rowe ◽  
Devaveena Dey ◽  
Thomas A. Davis

Severe polytraumatic injury initiates a robust immune response. Broad immune dysfunction in patients with such injuries has been well-documented; however, early biomarkers of immune dysfunction post-injury, which are critical for comprehensive intervention and can predict the clinical course of patients, have not been reported. Current circulating markers such as IL-6 and IL-10 are broad, non-specific, and lag behind the clinical course of patients. General blockade of the inflammatory response is detrimental to patients, as a certain degree of regulated inflammation is critical and necessary following trauma. Exosomes, small membrane-bound extracellular vesicles, found in a variety of biofluids, carry within them a complex functional cargo, comprised of coding and non-coding RNAs, proteins, and metabolites. Composition of circulating exosomal cargo is modulated by changes in the intra- and extracellular microenvironment, thereby serving as a homeostasis sensor. With its extensively documented involvement in immune regulation in multiple pathologies, study of exosomal cargo in polytrauma patients can provide critical insights on trauma-specific, temporal immune dysregulation, with tremendous potential to serve as unique biomarkers and therapeutic targets for timely and precise intervention.


Sign in / Sign up

Export Citation Format

Share Document