oscillation rate
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Ehsan Shakouri ◽  
Pezhman Ghorbani ◽  
Pedram Pourheidari ◽  
Saeed Fotuhi

Heat generation during bone cutting by sagittal saw may lead to temperature rise and possible incidence of thermal necrosis. The aim of the present research is to examine the effect of saw blade oscillation rate, blade feed rate, and irrigation by physiological saline solution on the bone temperature rise during sawing in order to determine the desired conditions for reducing the extent of thermal damage. For this purpose, empirical tests of bovine femur cutting were performed in 15 states, including five levels for the blade oscillation rate (10,000–18,000 cpm with 2000 cpm intervals) and three levels for the feed rate (10–30 mm.min−1 with 10 mm.min−1 intervals) for dry conditions; and five states, including five levels for the blade oscillation rate (10,000–18,000 cpm with 2000 cpm intervals) and one level in feed rate of 20 mm.min−1 for the irrigation conditions. The results indicated that the bone temperature rise had a direct relationship with the blade oscillation rate and an inverse relationship with its feed rate. In the state of no cooling, the minimum temperature rise (Δ T = 65.45°C) occurred at the blade speed of 10,000 cpm and feed rate of 30 mm.min−1, while in the state of sawing with irrigation, the temperature rise almost did not exceed the allowable range (Δ T ≤ 10°C). The results suggested that to lower the possibility of incidence of osteonecrosis in the bone resection by sagittal saw, cooling with physiological saline solution or application of the minimum blade oscillation rate and maximum feed rate is recommended.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 511 ◽  
Author(s):  
Li Wang ◽  
Ye Zhang ◽  
Ning Sun ◽  
Wei Sun ◽  
Yuehua Hu ◽  
...  

F-containing wastewater does great harm to human health and the ecological environment and thus needs to be treated efficiently. In this paper, the new calcium-containing precipitant calcite and aided precipitant fluorite were adopted to purify F-containing wastewater. Relevant reaction conditions, such as reaction time, oscillation rate, dosage of hydrochloric acid, calcite dosage and the assisting sedimentation performance of fluorite, and action mechanism are analyzed. The experiment showed that the removal rate of fluoride in simulated wastewater reached 96.20%, when the reaction time, the dosage of calcite, the dosage of 5% dilute hydrochloric acid, and the oscillation rate was 30 min, 2 g/L, 21.76 g/L, and 160 r/min, respectively. Moreover, the removal rate of fluoride in the actual F-containing smelting wastewater reaches approximately 95% under the optimum condition of calcite dosage of 12 g/L, reaction time of 30 min, and oscillation rate of 160 r/min. The addition of fluorite significantly improves the sedimentation performance of the reactive precipitates. The experimental results showed that calcite and fluorite can effectively reduce the concentration of fluoride ions in F-containing wastewater and solve the problem of slow sedimentation of reactive precipitates.


2019 ◽  
Vol 6 (4) ◽  
pp. 182195 ◽  
Author(s):  
Zhongjun Xue ◽  
Na Liu ◽  
Hongxiang Hu ◽  
Jieying Huang ◽  
Yusef Kianpoor Kalkhajeh ◽  
...  

Mesoporous ceramic functional nanomaterials (MCFN) is a self-assembled environmental adsorbent with a monolayer molecular which is widely used in the treatment of industrial wastewater and contaminated soil. This work aimed to study the relationship between the adsorption behaviour of Cd(II) by MCFN and contact time, initial concentration, MCFN dosage, pH, oscillation rate and temperature through a batch adsorption method. The adsorption kinetic and isotherm behaviours were well described by the pseudo-second-order and Langmuir models. The batch characterization technique revealed that MCFN had several oxygen-containing functional groups. Using Langmuir model, the maximum adsorption capacity of MCFN for Cd(II) was 97.09 mg g −1 at pH 6, 25°C, dosage of 0.2 g and contact time of 180 min. Thermodynamic study indicated that the present adsorption process was feasible, spontaneous and exothermic at the temperature range of 25–55°C. The results of this study provide an important enlightenment for Cd removal or preconcentration of porous ceramic nanomaterial adsorbents for environmental applications.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 499 ◽  
Author(s):  
Chih Tso ◽  
Chee Hor ◽  
Gooi Chen ◽  
Chee Kok

The heat induced by viscous dissipation in a microchannel fluid, due to a small oscillating motion of the lower plate, is investigated for the first time. The methodology is by applying the momentum and energy equations and solving them for three cases of standard thermal boundary conditions. The first two cases involve symmetric boundary conditions of constant surface temperature on both plates and both plates insulated, respectively. The third case has the asymmetric conditions that the lower plate is insulated while the upper plate is maintained at constant temperature. Results reveal that, although the fluid velocity is only depending on the oscillation rate of the plate, the temperature field for all three cases show that the induced heating is dependent on the oscillation rate of the plate, but strongly dependent on the parameters Brinkman number and Prandtl number. All three cases prove that the increasing oscillation rate or Brinkman number and decreasing Prandtl number, when it is less than unity, will significantly increase the temperature field. The present model is applied to the synovial fluid motion in artificial hip implant and results in heat induced by viscous dissipation for the second case shows remarkably close agreement with the experimental literature.


2005 ◽  
Vol 32 (10) ◽  
pp. 863 ◽  
Author(s):  
Barbara G. Pickard ◽  
Masaaki Fujiki

A previously unknown cytoskeletal structure, now named the plasmalemmal reticulum (Gens et al. 2000, Protoplasma 212, 115–134), was found in cultured BY-2 tobacco cells during a search for a force-focusing mechanism that might enhance signal transduction by the cells’ mechanosensory Ca2+-selective cation channels (MCaCs). This polyhedral structure, which links cell wall, plasma membrane, and internal cytoplasm, prominently contains arabinogalactan protein (AGP). To check for reticulum-promoted Ca2+ elevation, the AGP-binding reagent (β-d-glucosyl)3 Yariv phenylglycoside has been applied to BY-2 cells expressing a free cameleon Ca2+ reporter. Ca2+ elevation was substantial and prolonged. Moreover it occurred in the nucleus as well as the cytoplasm. Cells treated with non-binding mannosyl Yariv reagent could not be discriminated from untreated controls or those treated with carrier solution alone. Supply of the MCaC inhibiter Gd3+ just before treatment with Yariv reagent prevented Ca2+ rise. These data strongly support the hypothesis that the plasmalemmal reticulum controls MCaC activity. The massive inward spread of Ca2+ suggested that entry of the ion through the channels initiated a wave of release from the ER, and YCX in the ER showed Ca2+ levels consistent with this premise. Cytosolic and nuclear Ca2+ often pulsed in control cells in near synchrony and at rates ranging from zero to five cycles per ∼20-min recording. (Pulsation was over-ridden by the applied amounts of glucosyl Yariv compound.) Suggestively but very crudely, oscillation rate was assessed as possibly correlating with stage of cell cycle. Because cell Ca2+ was lowered and pulsation was eliminated by Gd3+, MCaCs appear to participate in these endogenous fluctuations. The extent to which pulsing plays regulatory roles in relatively undifferentiated types of cells should be evaluated.


2003 ◽  
Vol 241 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Stefanie Hoffmann ◽  
Frank Krummenauer ◽  
Mana Tehrani ◽  
H. Burkhard Dick
Keyword(s):  

2001 ◽  
Vol 204 (21) ◽  
pp. 3693-3702 ◽  
Author(s):  
Mark A. Frye

SUMMARYTo characterize the in vivo responses of the wing hinge stretch receptor of Manduca sexta, I recorded its activity and simultaneously tracked the up-and-down motion of the wing while the hawkmoth flew tethered in a wind tunnel. The stretch receptor fires a high-frequency burst of spikes near each dorsal stroke reversal. The onset of the burst is tightly tuned to a set-point in wing elevation, and the number of spikes contained within the burst encodes the maximal degree of wing elevation during the stroke. In an effort to characterize its mechanical encoding properties, I constructed an actuator that delivered deformations to the wing hinge and simultaneously recorded the resultant stretch and tension and the activity of the stretch receptor. Stimuli included stepwise changes in length as well as more natural dynamic deformation that was measured in vivo. Step changes in length reveal that the stretch receptor encodes the static amplitude of stretch with both phasic and tonic firing dynamics. In vivo sinusoidal deformation revealed (i) that the timing of stretch receptor activity is tightly phase-locked within the oscillation cycle, (ii) that the number of spikes per burst is inversely related to oscillation frequency and (iii) that the instantaneous frequency of the burst increases with oscillation rate. At all oscillation rates tested, the instantaneous frequency of the burst increases with amplitude.


2001 ◽  
Vol 78 (9) ◽  
pp. 676-682 ◽  
Author(s):  
DONALD W. KLINE ◽  
JODY C. CULHAM ◽  
PAUL BARTEL ◽  
and LISA LYNK

Sign in / Sign up

Export Citation Format

Share Document