state space reduction
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 33 (1) ◽  
pp. 429-455
Author(s):  
Nadeem Fakhar Malik ◽  
Aamer Nadeem ◽  
Muddassar Azam Sindhu

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Würdemann

Abstract Distributed Synthesis is the problem of automatically generating correct controllers for individual agents in a distributed system. Petri games model this problem by a game between two teams of players on a Petri net structure. Under some restrictions, Petri games can be solved by a reduction to a two player game. The concept of symmetries in Petri nets is closely related to high-level representations of Petri games. Applying symmetries to the states in the two-player game results in a significant state space reduction. We give an overview about (high-level) Petri games and the application of symmetries in this setting. We present ongoing work aiming to concisely describe solutions of Petri games by a high-level representation.


2021 ◽  
pp. 102167
Author(s):  
Lixiang Shen ◽  
Dejun Mu ◽  
Guo Cao ◽  
Maoyuan Qin ◽  
Jiacheng Zhu ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 172988142096034
Author(s):  
Zachary Young ◽  
Hung Manh La

Multiagent coordination is highly desirable with many uses in a variety of tasks. In nature, the phenomenon of coordinated flocking is highly common with applications related to defending or escaping from predators. In this article, a hybrid multiagent system that integrates consensus, cooperative learning, and flocking control to determine the direction of attacking predators and learns to flock away from them in a coordinated manner is proposed. This system is entirely distributed requiring only communication between neighboring agents. The fusion of consensus and collaborative reinforcement learning allows agents to cooperatively learn in a variety of multiagent coordination tasks, but this article focuses on flocking away from attacking predators. The results of the flocking show that the agents are able to effectively flock to a target without collision with each other or obstacles. Multiple reinforcement learning methods are evaluated for the task with cooperative learning utilizing function approximation for state-space reduction performing the best. The results of the proposed consensus algorithm show that it provides quick and accurate transmission of information between agents in the flock. Simulations are conducted to show and validate the proposed hybrid system in both one and two predator environments, resulting in an efficient cooperative learning behavior. In the future, the system of using consensus to determine the state and reinforcement learning to learn the states can be applied to additional multiagent tasks.


Sign in / Sign up

Export Citation Format

Share Document