simultaneous approximation term
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Sofia Eriksson

AbstractThe scalar, one-dimensional advection equation and heat equation are considered. These equations are discretized in space, using a finite difference method satisfying summation-by-parts (SBP) properties. To impose the boundary conditions, we use a penalty method called simultaneous approximation term (SAT). Together, this gives rise to two semi-discrete schemes where the discretization matrices approximate the first and the second derivative operators, respectively. The discretization matrices depend on free parameters from the SAT treatment. We derive the inverses of the discretization matrices, interpreting them as discrete Green’s functions. In this direct way, we also find out precisely which choices of SAT parameters that make the discretization matrices singular. In the second derivative case, it is shown that if the penalty parameters are chosen such that the semi-discrete scheme is dual consistent, the discretization matrix can become singular even when the scheme is energy stable. The inverse formulas hold for SBP-SAT operators of arbitrary order of accuracy. For second and fourth order accurate operators, the inverses are provided explicitly.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Ludvig Lindeberg ◽  
Tuan Dao ◽  
Ken Mattsson

AbstractWe analyse numerically the periodic problem and the initial boundary value problem of the Korteweg-de Vries equation and the Drindfeld–Sokolov–Wilson equation using the summation-by-parts simultaneous-approximation-term method. Two sets of boundary conditions are derived for each equation of which stability is shown using the energy method. Numerical analysis is done when the solution interacts with the boundaries. Results show the benefit of higher order SBP operators.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1206
Author(s):  
Myeongseok Kang ◽  
Donghyun You

A simultaneous-approximation term is a non-reflecting boundary condition that is usually accompanied by summation-by-parts schemes for provable time stability. While a high-order convective flux based on reconstruction is often employed in a finite-volume method for compressible turbulent flow, finite-volume methods with the summation-by-parts property involve either equally weighted averaging or the second-order central flux for convective fluxes. In the present study, a cell-centered finite-volume method for compressible Naiver–Stokes equations was developed by combining a simultaneous-approximation term based on extrapolation and a low-dissipative discretization method without the summation-by-parts property. Direct numerical simulations and a large eddy simulation show that the resultant combination leads to comparable non-reflecting performance to that of the summation-by-parts scheme combined with the simultaneous-approximation term reported in the literature. Furthermore, a characteristic boundary condition was implemented for the present method, and its performance was compared with that of the simultaneous-approximation term for a direct numerical simulation and a large eddy simulation to show that the simultaneous-approximation term better maintained the average target pressure at the compressible flow outlet, which is useful for turbomachinery and aerodynamic applications, while the characteristic boundary condition better preserved the flow field near the outlet.


Sign in / Sign up

Export Citation Format

Share Document