Three Cd(II) coordination complexes with unique structures and topologies, namely, {[Cd(tttmb)(Hbtc)]·5H2O}n (1), {[Cd(tttmb)(m-phda)(H2O)]·2H2O}n (2), and {[Cd(tttmb)(o-cpla)]·(CH3CN)·(H2O)1.5}n (3), have been successfully synthesized under hydro(solvo)thermally condition based on a flexible tripodal N-contained ligand 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene (tttmb) and aromatic polycarboxylate acids (H3btc = 1,2,4-benzenetricarboxylic acid, m-H2phda = 1,3-phenylenediacetic acid and o-H2cpla = Homophthalic acid). Complexes 1–3 were characterized by elemental analysis, IR spectroscopy, X-ray single-crystal diffraction and thermogravimetric analyses. 1 crystallize in the orthorhombic chiral space group P212121 and feature 3D coordination networks. 2 reveals a 2D ladder-like structure with (4,4) topology containing alternating Cd(II)/m-phda2− left- and right-handed helical motifs. 3 exhibits a 3D net with (63)(66)(7·82) topology. The structural and dimensional diversity of these complexes not only indicates that the flexible ligand tttmb exhibits strong coordination ability and diverse coordination modes, but also shows that aromatic polycarboxylates play important roles in constructing the frameworks of complexes. Moreover, the different photoluminescence behaviors of 1–3 have been studied in the solid state.