simultaneous selection
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
N. Anuradha ◽  
T. S. S. K. Patro ◽  
Ashok Singamsetti ◽  
Y. Sandhya Rani ◽  
U. Triveni ◽  
...  

Finger millet, an orphan crop, possesses immense potential in mitigating climate change and could offer threefold security in terms of food, fodder, and nutrition. It is mostly cultivated as a subsistence crop in the marginal areas of plains and hills. Considering the changes in climate inclusive of recurrent weather vagaries witnessed every year, it is crucial to select stable, high-yielding, area-specific, finger millet cultivars. Sixty finger millet varieties released across the country were evaluated over six consecutive rainy seasons from 2011 to 2016 at the Agricultural Research Station, Vizianagaram. The genotype × environment interaction (GEI) was found to be significant in the combined ANOVA. Furthermore, the Additive Main effects and Multiplicative Interaction (AMMI) analysis asserted that genotypes and the GEI effects accounted for approximately 89% of the total variation. Strong positive associations were observed in an estimated set of eleven stability parameters which were chosen to identify stable genotypes. Furthermore, Non-parametric and Parametric Simultaneous Selection indices (NP-SSI and P-SSI) were calculated utilizing AMMI-based stability parameter (ASTAB), modified AMMI stability value (MASV), and Modified AMMI Stability Index (MASI) to identify stable high yielders. Both methods had inherent difficulties in ranking genotypes for SSI. To overcome this, the initial culling [i.e., SSI with culling strategy (C-SSI)] of genotypes was introduced for stability. In the C-SSI method, the top ten genotypes were above-average yielders, while those with below-average yield were observed in NP-SSI and P-SSI methods. Similarly, the estimation of best linear unbiased prediction (BLUP)-based simultaneous selections, such as harmonic mean of genotypic values (HMGV), relative performance of genotypic values (RPGV), and harmonic mean of relative performance of genotypic values (HMRPGV), revealed that none of the top ten entries had below-average yield. The study has proven that C-SSI and BLUP-based methods were equally worthy in the selection of high-yielding genotypes with stable performance. However, the C-SSI approach could be the best method to ensure that genotypes with a considerable amount of stability are selected. The multi-year trial SSI revealed that entries Indaf-9, Sri Chaitanya, PR-202, and A-404; and VL324 and VL146 were ascertained to be the most stable high-yielding genotypes among medium-to-late and early maturity groups, respectively.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Abil Dermail ◽  
Aphakorn Fuengtee ◽  
Kamol Lertrat ◽  
Willy Bayuardi Suwarno ◽  
Thomas Lübberstedt ◽  
...  

Multi-trait selection helps breeders identify genotypes that appeal to divergent groups of preferences. In this study, we performed simultaneous selection of sweet-waxy corn hybrids on several traits covering the perspectives of consumers (taller kernel depth, better eating quality), growers (early maturity, shorter plant stature, and high ear yield), and seed producers (high flowering synchrony, acceptable seed yield, and good plant architecture). Three supersweet corn lines and 8 waxy corn lines were intercrossed to generate 48 F1 hybrids according to North Carolina Design II, and these genotypes were laid out in a randomized complete block design with 3 replications across 2 seasons between 2017 and 2018. A sensory blind test on sweetness, stickiness, tenderness, and overall liking was conducted to assess the eating quality of steamed corn samples. Two methods of simultaneous selection, namely unweighted selection index and overall rank-sum index (ORSI), were applied to rank crosses, following all targeted groups of preferences. Genetic parameters and genetic gain were estimated to evaluate the effectiveness of those selection methods. Both approaches had similar patterns of preferable realized gain on each given trait and could identify similar top five crosses with only slight order changes, implying that these methods were effective to rank genotypes according to given selection criteria. One of the tested crosses, 101L/TSC-10 × KV/mon, consistently had the highest unweighted selection index in the dry (7.84) and the rainy (7.15) seasons and the lowest ORSI (310), becoming a promising candidate as synergistic sweet-waxy corn hybrid appealing to consumers, growers, and seed producers. The expected ideotypes of sweet-waxy corn hybrid are discussed.


Author(s):  
Elsa Fogelström ◽  
Giulia Zacchello ◽  
Johan Ehrlen

The timing of different life history events are often correlated, and selection might only rarely be exerted independently on the timing of a single event. In plants, phenotypic selection has often been shown to favour earlier flowering. However, little is known about to what extent this selection acts directly vs. indirectly via vegetative phenology, and if selection on the two traits is correlational. We estimated direct, indirect and correlational phenotypic selection on vegetative and reproductive phenology over three years for the perennial herb Lathyrus vernus. Direct selection favoured earlier flowering and shorter timespans between leaf-out and flowering in all years. However, early flowering was associated with early leaf-out, and the direction of selection on leaf-out day varied among years. As a result, selection on leaf-out weakened selection for early flowering in one of the study years. We found no evidence of correlational selection. Our results highlight the importance of including temporally correlated traits when exploring selection on the phenology of seasonal events.


Author(s):  
Bahram Alizadeh ◽  
Abbas Rezaizad ◽  
Mohammad Yazdandoost Hamedani ◽  
Gholamhossein Shiresmaeili ◽  
Farshad Nasserghadimi ◽  
...  

2021 ◽  
Author(s):  
Anjali Joshi ◽  
Sneha Adhikari ◽  
Narendra Kumar Singh ◽  
Amarjeet Kumar ◽  
Jai Prakash Jaiswal ◽  
...  

Abstract Maize is a crop possessing high adaptability however, large differential genotypic responses have been reported when evaluated under multiple environments. Using randomized complete block design with two replications a total of 169 teosinte derived maize backcross inbred lines (BILs) were evaluated in three different environments namely, E2, E4 and E6 for maydis leaf blight (MLB) resistance and grain yield. Out of these, 73 BILs were identified displaying resistance to MLB in at least one of the environments and were subjected to additive main effect and multiplicative interaction (AMMI) analysis and genotype and genotype X environment (GGE) biplot analysis for identification of lines showing stable and high MLB resistance and grain yield. Highly significant effects of genotype, environment and genotype X environment interaction (GEI) were observed for both the traits studied. AMMI ANOVA for percent disease index (PDI) revealed that highest percentage of total sum of squares (SS) was attributed to GEI (40.55%) while 32.86% and 26.59% was contributed by genotype and environment, respectively. For grain yield largest contribution of 68.02% towards SS was done by genotype component followed by GEI (17.50%) and E (14.48%). GGE biplot analysis identified two mega environments for both PDI (E2, E4/E6) and grain yield (E2/E4, E6). Based on AMMI stability value (ASV), genotype MT-90 (32) was observed to be most stable for PDI. While for grain yield highest stability was displayed by genotype MT-83 (28). Simultaneous selection index (SSI) helped in identification of ten stable high yielding MLB resistant genotypes namely, MT-120 (45), MT-14 (2), MT-166 (62), MT-148 (55), MT-190 (72), MT-37 (9), MT-19 (3), MT-114 (42), MT-77 (27) and MT-94 (35) which could be used in future breeding programmes either as donor of MLB resistance and grain yield or after combining ability analysis these genotypes could be used as parents for development of superior yielding MLB resistant hybrids.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Moisés Ambrósio ◽  
Alexandre Pio Viana ◽  
Rodrigo Moreira Ribeiro ◽  
Sandra Costa Preisigke ◽  
Natan Ramos Cavalcante ◽  
...  

2020 ◽  
Vol 36 ◽  
Author(s):  
Igor Forigo Beloti ◽  
Gabriel Mascarenhas Maciel ◽  
Fernando Cezar Juliatti ◽  
Rafael Resende Finzi ◽  
Daniel Bonifácio Oliveira Cardoso

In the improvement of pumpkins, the selection based on one or a few characters of interest tends to be less efficient, leading to a superior product only compared to the few characters selected. To maximize the simultaneous selection of multiple characteristics of interest, selection indexes are used to obtain a numerical value resulting from the combination of the characters on which the simultaneous selection is to be practiced. The objective of this study was to determine genetic parameters and the most appropriate selection indexes in strains of Summer squash (C. pepo). Statistical analyzes were performed based on 65 genotypes belonging to the vegetable germplasm bank of the Federal University of Uberlândia. The variables analyzed were: leaf area index, precocity, SPAD index, productivity. plant-1, number of fruits. Plant-1, leaf temperature, NDVI index and NDRE index. The indexes were used: Smith (1936) and Hazel (1943), the sum of “Ranks” by Mulamba and Mock (1978), and Willians (1962). The selection methodologies selected ten individuals (15% of the genotypes). The values found for h² (%) ranged from 36.92% (SPAD) to 59.65% (cycle). The values obtained in the CVg / CVe quotient were below 1, varying from 0.18 for leaf temperature to 0.70 for the cycle, with the other variables close to 0.5. The CVg genetic variation coefficient (%) was also low, ranging from 1.84% for leaf temperature to 30.94% for productivity. The greatest gains obtained with direct and indirect selection were for the characters productivity (35.92%), NDRE (33.04%), number of fruits (28.93%) and leaf area index (22.72%). The Mulamba and Mock (1978) index showed the highest total selection gain value, providing a balanced distribution of selection gains, choosing the genotypes: 8, 31, 34, 38, 42, 64, 65, 66, 67 and 68.


2020 ◽  
Vol 38 (4) ◽  
pp. 394-399
Author(s):  
Ana Karolina de OS Acevedo ◽  
Artur M Medeiros ◽  
Priscila A Barroso ◽  
Gérson do N Costa ◽  
Angela CA Lopes ◽  
...  

ABSTRACT Pepper plants of the genus Capsicum are widely grown worldwide. The Capsicum annuum species shows ornamental potential; nevertheless, in the state of Piauí, there has been a lack of studies on its performance, related to quality traits needed to meet market demand. The aim of this study was to estimate the genetic parameters and associations between traits of ornamental interest in C. annuum in order to indicate, by simultaneous selection of traits, accessions to start an ornamental pepper breeding program in Piauí. We evaluated 16 accessions of C. annuum under plastic house conditions at Universidade Federal do Piauí. Number of days to flowering, number of days to fruit maturation, plant height, number of fruits per plant, fruit persistence, fruit length, fruit width, leaf length and fruit weight were evaluated. A significant difference (p≤0.01) between accessions for all traits was noticed. Coefficient of genetic variation / coefficient of experimental variation [Cvg/Cve (%)] ratios were greater than 1 and the genotypic determination coefficient (H²) values were all greater than 89.95%. The estimates of the genotypic correlations were higher in relation to phenotypic correlations in most of the traits, however, according to path analysis, an effect of residual variable (0.59) was verified. According to the results, the accessions BAGC 98, 199, 207 and 236 can be used as parents to start an ornamental pepper breeding program in Piauí.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Alexander Paz ◽  
Kul Shrestha ◽  
Cristian Arteaga ◽  
Douglas Baker

This study proposes a methodology for the calibration of microscopic traffic flow simulation models by enabling simultaneous selection of traffic links and associated parameters. The analyst selects any number and combination of links and model parameters for calibration. Most calibration methods consider the entire network and use ad hoc approaches without enabling a specific selection of location and associated parameters. In practice, only a subset of links and parameters is used for calibration based on several factors such as expert knowledge of the system or constraints imposed by local governance. In this study, the calibration problem for the simultaneous selection of links and parameters was formulated using a mathematical programming approach. The proposed methodology is capable of calibrating model parameters considering multiple time periods and performance measures simultaneously. Traffic volume and speed are the performance measures used in this study, and the methodology is developed without considering the characteristics of a specific traffic flow model. A genetic algorithm was implemented to find a solution to the proposed mathematical program. In the experiments, two traffic models were calibrated: the first set of experiments included selection of links only, while all associated parameters were considered for calibration. The second set of experiments considered simultaneous selection of links and parameters. The implications of these experiments indicate that the models were calibrated successfully subject to selection of a minimum number of links. As expected, the more links and parameters that are used for calibration, the more time it takes to find a solution, but the overall results are better. All parameter values were reasonable and within constraints after successful calibration.


Sign in / Sign up

Export Citation Format

Share Document