wandering domains
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Anna Miriam Benini ◽  
Vasiliki Evdoridou ◽  
Núria Fagella ◽  
Philip J. Rippon ◽  
Gwyneth M. Stallard

AbstractWhile the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable.


Author(s):  
DAVID MARTÍ-PETE

Abstract We study the iteration of transcendental self-maps of $\,\mathbb{C}^*\!:=\mathbb{C}\setminus \{0\}$ , that is, holomorphic functions $f:\mathbb{C}^*\to\mathbb{C}^*$ for which both zero and infinity are essential singularities. We use approximation theory to construct functions in this class with escaping Fatou components, both wandering domains and Baker domains, that accumulate to $\{0,\infty\}$ in any possible way under iteration. We also give the first explicit examples of transcendental self-maps of $\,\mathbb{C}^*$ with Baker domains and with wandering domains. In doing so, we developed a sufficient condition for a function to have a simply connected escaping wandering domain. Finally, we remark that our results also provide new examples of entire functions with escaping Fatou components.


2019 ◽  
Vol 139 (1) ◽  
pp. 369-395
Author(s):  
Núria Fagella ◽  
Xavier Jarque ◽  
Kirill Lazebnik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document