sequence characteristics
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 12 (4) ◽  
pp. 807-812
Author(s):  
Yan Li ◽  
Yu-Ren Zhang ◽  
Ping Zhang ◽  
Dong-Xu Li ◽  
Tian-Long Xiao

It is a critical impact on the processing of biological cells to protein–protein interactions (PPIs) in nature. Traditional PPIs predictive biological experiments consume a lot of human and material costs and time. Therefore, there is a great need to use computational methods to forecast PPIs. Most of the existing calculation methods are based on the sequence characteristics or internal structural characteristics of proteins, and most of them have the singleness of features. Therefore, we propose a novel method to predict PPIs base on multiple information fusion through graph representation learning. Specifically, firstly, the known protein sequences are calculated, and the properties of each protein are obtained by k-mer. Then, the known protein relationship pairs were constructed into an adjacency graph, and the graph representation learning method–graph convolution network was used to fuse the attributes of each protein with the graph structure information to obtain the features containing a variety of information. Finally, we put the multi-information features into the random forest classifier species for prediction and classification. Experimental results indicate that our method has high accuracy and AUC of 78.83% and 86.10%, respectively. In conclusion, our method has an excellent application prospect for predicting unknown PPIs.


Author(s):  
Gourisankar Ghosh ◽  
Vivien Ya-Fan Wang

The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zehui Zhang ◽  
Yinfeng Liang ◽  
Lihui Yu ◽  
Menghan Chen ◽  
Yuru Guo ◽  
...  

TatD DNases are conserved proteins in a variety of organisms and are considered potential virulence factors in Plasmodium falciparum and Streptococcus pneumoniae. However, the function of TatD DNases has not yet been determined in Trueperella pyogenes, which causes various infections in animals and leads to economic losses. In this study, we describe the roles of TatD DNases in T. pyogenes (TpTatDs). A bioinformatics analysis was performed to investigate the sequence characteristics of TpTatDs, and then the ability of recombinant TatD proteins to hydrolyze DNA was determined in the presence of divalent cations. Moreover, we constructed tatD-deficient mutants. The biofilms formed by the wild-type and mutant strains were observed under a microscope. The mortality and bacterial load in the spleen of mice infected with the wild-type strain and tatD-deficient mutants were determined to obtain insights into the role of TatDs in the virulence of T. pyogenes. Two TatD DNases were identified in T. pyogenes. They were Mg2+-dependent DNases and exhibited DNA endonuclease activity. Compared with those formed by the parental strain, biofilms formed by mutants showed a significantly reduced thickness and biomass. Moreover, mutants produced a lower bacterial load in the spleen of mice and compromised virulence. Our data indicated that TatD DNases in T. pyogenes are involved in biofilm formation and required for virulence during infections.


2021 ◽  
Author(s):  
Akshay Kumar Avvaru ◽  
Rakesh K Mishra ◽  
Divya Tej Sowpati

Numerical or vector representations of DNA sequences have been applied for identification of specific sequence characteristics and patterns which are not evident in their character (A, C, G, T) representations. These transformations often reveal a mathematical structure to the sequences which can be captured efficiently using established mathematical methods. One such transformation, the 2-bit format, represents each nucleotide using only two bits instead of eight for efficient storage of genomic data. Here we describe a mathematical property that exists in the 2-bit representation of tandemly repeated DNA sequences. Our tool, DiviSSR (pronounced divisor), leverages this property and subsequent arithmetic for ultrafast and accurate identification of tandem repeats. DiviSSR can process the entire human genome in ~30s, and short sequence reads at a rate of >1 million reads/s on a single CPU thread. Our work also highlights the implications of using simple mathematical properties of DNA sequences for faster algorithms in genomics.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Mingxiang Teng ◽  
Dongliang Du ◽  
Danfeng Chen ◽  
Rafael A Irizarry

Abstract Multiple sources of variability can bias ChIP-seq data toward inferring transcription factor (TF) binding profiles. As ChIP-seq datasets increase in public repositories, it is now possible and necessary to account for complex sources of variability in ChIP-seq data analysis. We find that two types of variability, the batch effects by sequencing laboratories and differences between biological replicates, not associated with changes in condition or state, vary across genomic sites. This implies that observed differences between samples from different conditions or states, such as cell-type, must be assessed statistically, with an understanding of the distribution of obscuring noise. We present a statistical approach that characterizes both differences of interests and these source of variability through the parameters of a mixed effects model. We demonstrate the utility of our approach on a CTCF binding dataset composed of 211 samples representing 90 different cell-types measured across three different laboratories. The results revealed that sites exhibiting large variability were associated with sequence characteristics such as GC-content and low complexity. Finally, we identified TFs associated with high-variance CTCF sites using TF motifs documented in public databases, pointing the possibility of these being false positives if the sources of variability are not properly accounted for.


2021 ◽  
Vol 873 (1) ◽  
pp. 012013
Author(s):  
S. Rohadi ◽  
Y.H. Perdana ◽  
N. Herayndoko ◽  
B. Sunardi ◽  
T. A. Prakoso ◽  
...  

Abstract The area of Ambon, Maluku is located in the subduction zone in bands where the Australian plate meets the Eurasian plate, thus causing tectonic activities. The Ambon earthquake on 26th September 2019 with 6.5 Magnitude, while the Epicentral coordinates of the earthquake were determined as 3,53° S and 128,39° E and a focal depth of 10 km, according to the Agency for Meteorology Climatology and Geophysics, Indonesia. This earthquake was strongly felt at the biggest shock was felt with intensity VI-VII as unified in Ambon City, while several other areas are reported to have experienced small shaking, such as Intensity V in Masohi, and Intensity IV in Namlea and Namrole. We used a dataset of 24 waveforms of seven sensors, we determine a tabular solution, which have a large moment of 0.4573 x 1019 N-m, the depth is 6 km by minimizing the inversion residual. The method resulting strike and rake fault, with strike: 341.8°; dip; 81.5°; rake: 158.4°, and second nodal plane strike: 75.1°; dip; 68.6°; rake: 9.14°. The mechanisms were compared with those from other agency in agreement. The time decay intervals between mainshocks and significant aftershocks follow Mogi and Utsu’s Law but with a relatively faster rate of decay than that of aftershocks in general.


2021 ◽  
Vol 9 (10) ◽  
pp. 2067
Author(s):  
Weijian Wang ◽  
Muchun Wan ◽  
Fang Yang ◽  
Na Li ◽  
Lihua Xiao ◽  
...  

Cryptosporidium bovis is a common enteric pathogen in bovine animals. The research on transmission characteristics of the pathogen is hampered by the lack of subtyping tools. In this study, we retrieve the nucleotide sequence of the 60 kDa glycoprotein (GP60) from the whole genome sequences of C. bovis we obtained previously and analyze its sequence characteristics. Despite a typical structure of the GP60 protein, the GP60 of C. bovis had only 19.3–45.3% sequence identity to those of other Cryptosporidium species. On the basis of the gene sequence, a subtype typing tool was developed for C. bovis and used in the analysis of 486 C. bovis samples from dairy cattle, yaks, beef cattle, and water buffalos from China. Sixty-eight sequence types were identified from 260 subtyped samples, forming six subtype families, namely XXVIa to XXVIf. The mosaic sequence patterns among subtype families and the 121 potential recombination events identified among the sequences both suggest the occurrence of genetic recombination at the locus. No obvious host adaptation and geographic differences in the distribution of subtype families were observed. Most farms with more extensive sampling had more than one subtype family, and the dominant subtype families on a farm appeared to differ between pre- and post-weaned calves, indicating the likely occurrence of multiple episodes of C. bovis infections. There was an association between XXVId infection and occurrence of moderate diarrhea in dairy cattle. The subtyping tool developed and the data generated in the study might improve our knowledge of the genetic diversity and transmission of C. bovis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialei Liang ◽  
Kexin Zhou ◽  
Qiaoling Li ◽  
Xu Dong ◽  
Peiyao Zhang ◽  
...  

A novel plasmid-encoded aminoglycoside 3''-nucleotidyltransferase ANT(3")-IId, was discovered in Acinetobacter lwoffi strain H7 isolated from a chick on an animal farm in Wenzhou, China. The whole-genome of A. lwoffii H7 consisted of one chromosome and five plasmids (pH7-250, pH7-108, pH7-68, pH7-48, and pH7-11). ant(3")-IId was identified as being encoded on pH7-250, sharing the highest amino acid identity of 50.64% with a function-known resistance gene, ant(3")-IIb (KB849358.1). Susceptibility testing and enzyme kinetic parameter analysis were conducted to determine the function of the aminoglycoside 3"-nucleotidyltransferase. The ant(3")-IId gene conferred resistance to spectinomycin and streptomycin [the minimum inhibitory concentration (MIC) levels of both increased 16-fold compared with the control strain]. Consistent with the MIC data, kinetic analysis revealed a narrow substrate profile including spectinomycin and streptomycin, with Kcat/Km ratios of 4.99 and 4.45×103M−1 S−1, respectively. Sequencing analysis revealed that the ant(3")-IId gene was associated with insertion sequences (IS) element [ΔISAba14-ΔISAba14-hp-orf-orf-orf1-ant(3")-IId], and ant(3")-IId were identified in plasmids from various Acinetobacter species. This study of the novel aminoglycoside 3"-nucleotidyltranferase ANT(3")-IId helps us further understand the functional and sequence characteristics of aminoglycoside 3"-nucleotidyltranferases, highlights the risk of resistance gene transfer among Acinetobacter species and suggests that attention should be given to the emergence of new aminoglycoside 3"-nucleotidyltranferase genes.


2021 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
Jing Wang

To identify Ejiao and its adulterants at the DNA level by using DNA molecula marker. Ejiao (Asini Corii Colla) is a commonly used medicinal material. However, its adulteration is a serious concern. Due to the morphological characteristics of Asini Corii Colla and its adulterants, traditional identification techniques often complex and professional, which is not conducive to the circulation management and safety of the medicinal materials. To improve the distinction between Asini Corii Colla and its adulterants accurately, this study identified and its adulterant samples based on the CytB sequence. Sequence characteristics, Basic Local Alignment Search Tool (BLAST) application, genetic distance, construction of phylogenetic tree showed the CytB sequence to accurately identify Asini Corii Colla from its adulterants. Furthermore, in this study, we designed a specific primer, based on the CytB sequence, and established a PCR detection system for rapid, sensitive, and specific identification of Asini Corii Colla. Compared to DNA barcoding technology, this method has shorter detection time, stronger specificity, and higher sensitivity, which lays the foundation for the rapid identification of Asini Corii Colla.


Sign in / Sign up

Export Citation Format

Share Document