dna accessibility
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 63)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Lauren Eades ◽  
Michael Drozd ◽  
Richard M. Cubbon

Innate immune function is shaped by prior exposures in a phenomenon often referred to as ‘memory’ or ‘training’. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.


2022 ◽  
Author(s):  
Aditi Singh ◽  
Xyrus X. Maurer-Alcalá ◽  
Therese Solberg ◽  
Silvan Gisler ◽  
Michael Ignarski ◽  
...  

Small RNAs are known to mediate silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. Post-zygotic development of the Paramecium somatic genome requires elimination of thousands of transposon remnants (IESs) and transposable elements that are scattered throughout the germline genome (Garnier et al. 2004). The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries (Bouhouche et al. 2011; Furrer et al. 2017). Previous research suggests that small RNAs induce heterochromatin formation within IESs, which, in turn, is required for DNA elimination (Liu et al. 2007). Here we show that IES recognition and precise excision is facilitated by recruitment of a homolog of a chromatin remodeler ISWI, which depletes target genomic regions of nucleosomes, making the chromatin accessible for DNA cleavage. ISWI knockdown in Paramecium leads to pronounced inhibition of DNA elimination. Furthermore, nucleosome profiling indicates that ISWI is required for IES elimination in nucleosome-dense genomic regions, while other IESs do not require small RNAs or ISWI for excision. ISWI silencing notably also reduces DNA elimination precision, resulting in aberrant excision at alternative IES boundaries. In summary, we demonstrate that chromatin remodeling that increases DNA accessibility together with small RNAs are necessary for efficient and precise DNA elimination in Paramecium.


2021 ◽  
Vol 118 (51) ◽  
pp. e2024795118
Author(s):  
Athéna R. Ypsilanti ◽  
Kartik Pattabiraman ◽  
Rinaldo Catta-Preta ◽  
Olga Golonzhka ◽  
Susan Lindtner ◽  
...  

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer–gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


2021 ◽  
Author(s):  
Nour J Abdulhay ◽  
Laura J Hsieh ◽  
Colin P McNally ◽  
Mythili Ketavarapu ◽  
Sivakanthan Kasinathan ◽  
...  

ABSTRACTATP-dependent chromatin remodelers regulate the DNA accessibility required of virtually all nuclear processes. Biochemical studies have provided insight into remodeler action at the nucleosome level, but how these findings translate to activity on chromatin fibers in vitro and in vivo remains poorly understood. Here, we present a massively multiplex single-molecule platform allowing high-resolution mapping of nucleosomes on fibers assembled on mammalian genomic sequences. We apply this method to distinguish between competing models for chromatin remodeling by the essential ISWI ATPase SNF2h: linker-length-dependent dynamic positioning versus fixed-linker-length static clamping. Our single-fiber data demonstrate that SNF2h operates as a density-dependent, length-sensing chromatin remodeler whose ability to decrease or increase DNA accessibility depends on single-fiber nucleosome density. In vivo, this activity manifests as different regulatory modes across epigenomic domains: at canonically-defined heterochromatin, SNF2h generates evenly-spaced nucleosome arrays of multiple nucleosome repeat lengths; at SNF2h-dependent accessible sites, SNF2h slides nucleosomes to increase accessibility of motifs for the essential transcription factor CTCF. Overall, our generalizable approach provides molecularly-precise views of the processes that shape nuclear physiology. Concurrently, our data illustrate how a mammalian chromatin remodeling enzyme can effectively sense nucleosome density to induce diametrically-opposed regulatory effects within the nucleus.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009950
Author(s):  
Hilary T. Brewis ◽  
Alice Y. Wang ◽  
Aline Gaub ◽  
Justine J. Lau ◽  
Peter C. Stirling ◽  
...  

Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.


2021 ◽  
Vol 35 (21-22) ◽  
pp. 1403-1430
Author(s):  
Andrej Alendar ◽  
Anton Berns

Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yena Lee ◽  
Yunha Choi ◽  
Go Hun Seo ◽  
Gu-Hwan Kim ◽  
Changwon Keum ◽  
...  

Abstract Background The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorders, including the Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF complex-related intellectual disability disorders (SSRIDDs). Methods Whole-exome sequencing was performed in 564 Korean patients with neurodevelopmental disorders. Twelve patients with SSRIDDs (2.1%) were identified and their medical records were retrospectively analyzed. Results ARID1B, found in eight patients, was the most frequently altered gene. Four patients harbored pathogenic variants in SMARCA4, SMARCB1, ARID2, and SMARCA2. Ten patients were diagnosed with CSS, and one patient without a typical phenotype was diagnosed with ARID1B-related nonsyndromic intellectual disability. Another patient harboring the SMARCA2 pathogenic variant was diagnosed with NCBRS. All pathogenic variants in ARID1B were truncating, whereas variants in SMARCA2, SMARCB1, and SMARCA4 were nontruncating (missense). Frequently observed phenotypes were thick eyebrows (10/12), hypertrichosis (8/12), coarse face (8/12), thick lips (8/12), and long eyelashes (8/12). Developmental delay was observed in all patients, and profound speech delay was also characteristic. Agenesis or hypoplasia of the corpus callosum was observed in half of the patients (6/12). Conclusions SSRIDDs have a broad disease spectrum, including NCBRS, CSS, and ARID1B-related nonsyndromic intellectual disability. Thus, SSRIDDs should be considered as a small but important cause of human developmental disorders.


2021 ◽  
Author(s):  
Yena Lee ◽  
Yunha Choi ◽  
Go Hun Seo ◽  
Gu-Hwan Kim ◽  
Changwon Keum ◽  
...  

Abstract Background: The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate (ATP)-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorder, including the Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF-related intellectual disability (SSRIDD).Methods: Whole exome sequencing was performed in 564 Korean patients with neurodevelopmental disorders. Twelve patients with SSRIDDs (2.1%) were included, and their medical records were retrospectively analyzed. Results: ARID1B, found in eight patients, were the most frequently-altered gene. Four patients harbored mutations in SMARCA4, SMARCB1, ARID2, and SMARCA2. Ten patients were diagnosed with CSS, and one patient without typical phenotypes was classified as ARID1B-related intellectual disability. Another patient harboring the SMARCA2 mutation was diagnosed with NCBRS. All pathogenic variants in ARID1B were truncating, whereas variants in SMARCA2, SMARCB1, and SMARCA4 were nontruncating (missense) mutations. Frequently-observed phenotypes were thick eyebrows (10/12), hypertrichosis (8/12), coarse face (8/12), thick lips (8/12), and long eyelashes (8/12). Developmental delay was observed in all patients, and profound speech delay was also characteristic. Agenesis or hypoplasia of the corpus callosum was found in half of the patients (6/12).Conclusions: SSRIDD holds a broad disease spectrum, including NCBRS, CSS, and ARID1B-related intellectual disability. Thus, the SSRIDD should be considered as a small but important cause of human developmental disorder.


2021 ◽  
Author(s):  
Kathryn M Stevens ◽  
Antoine Hocher ◽  
Tobias Warnecke

AbstractHistones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA accessibility is the replacement of histones in the nucleosome with paralogous variants. Histones are also present in archaea but whether and how histone variants contribute to the generation of different physiologically relevant chromatin states in these organisms remains largely unknown. Conservation of paralogs with distinct properties can provide prima facie evidence for defined functional roles. We recently revealed deep conservation of histone paralogs with different properties in the Methanobacteriales, but little is known experimentally about these histones. In contrast, the two histones of the model archaeon Thermococcus kodakarensis, HTkA and HTkB, have been examined in some depth, both in vitro and in vivo. HTkA and HTkB exhibit distinct DNA-binding behaviours and elicit unique transcriptional responses when deleted. Here, we consider the evolution of HTkA/B and their orthologs across the order Thermococcales. We find histones with signature HTkA- and HTkB-like properties to be present in almost all Thermococcales genomes. Phylogenetic analysis indicates the presence of one HTkA- and one HTkB-like histone in the ancestor of Thermococcales and long-term maintenance of these two paralogs throughout Thermococcales diversification. Our results support the notion that archaea and eukaryotes have convergently evolved histone variants that carry out distinct adaptive functions. Intriguingly, we also detect more highly diverged histone-fold proteins, related to those found in some bacteria, in several Thermococcales genomes. The functions of these bacteria-type histones remain entirely unknown, but structural modelling suggests that they can form heterodimers with HTkA/B-like histones.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunhui Peng ◽  
Shuxiang Li ◽  
Alexey Onufriev ◽  
David Landsman ◽  
Anna R. Panchenko

AbstractLittle is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility.


Sign in / Sign up

Export Citation Format

Share Document