circular chromosome conformation capture
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 18 (01) ◽  
pp. 2050001
Author(s):  
Dimitrios Zisis ◽  
Paweł Krajewski ◽  
Maike Stam ◽  
Blaise Weber ◽  
Iris Hövel

The circular chromosome conformation capture technique followed by sequencing (4C-seq) has been used in a number of studies to investigate chromosomal interactions between DNA fragments. Computational pipelines have been developed and published that offer various possibilities of 4C-seq data processing and statistical analysis. Here, we present an overview of four of such pipelines (fourSig, FourCSeq, 4C-ker and w4Cseq) taking into account the most important stages of computations. We provide comparisons of the methods and discuss their advantages and possible weaknesses. We illustrate the results with the use of data obtained for two different species, in a study devoted to vernalization control in Arabidopsis thaliana by the FLOWERING LOCUS C (FLC) gene and to long-range chromatin interactions in mouse embryonic stem cells.


2019 ◽  
Vol 20 (14) ◽  
pp. 3473 ◽  
Author(s):  
I-Lu Lai ◽  
Ya-Sian Chang ◽  
Wen-Ling Chan ◽  
Ya-Ting Lee ◽  
Ju-Chen Yen ◽  
...  

Gender affects cancer susceptibility. Currently, there are only a few studies on Y chromosome-linked long noncoding RNAs (lncRNAs), and the potential association between lncRNAs and cancers in males has not been fully elucidated. Here, we examined the expression of testis-specific transcript Y-linked 15 (TTTY15) in 37 males with non-small cell lung cancer (NSCLC), and performed circular chromosome conformation capture with next-generation sequencing to determine the genomic interaction regions of the TTTY15 gene. Our results showed that the expression levels of TTTY15 were lower in NSCLC tissues. Lower TTTY15 expression levels were associated with Tumor-Node-Metastasis (TNM) stage. A TTTY15 knockdown promoted malignant transformation of NSCLC cells. Based on the bioinformatics analysis of circular chromosome conformation capture data, we found that T-box transcription factor 4 (TBX4) may be a potential target gene of TTTY15. The RNA immunoprecipitation and chromatin immunoprecipitation results showed that TTTY15 may interact with DNA (cytosine-5)-methyltransferase 3A (DNMT3A), and the TTTY15 knockdown increased the binding of DNMT3A to the TBX4 promoter. We concluded that low TTTY15 expression correlates with worse prognosis among patients with NSCLC. TTTY15 promotes TBX4 expression via DNMT3A-mediated regulation. The identification of lncRNAs encoded by male-specific genes may help to identify potential targets for NSCLC therapy.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Daan Noordermeer ◽  
Marion Leleu ◽  
Patrick Schorderet ◽  
Elisabeth Joye ◽  
Fabienne Chabaud ◽  
...  

Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels.


Sign in / Sign up

Export Citation Format

Share Document