null space approach
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Jennifer Scott ◽  
Miroslav Tůma

AbstractNull-space methods have long been used to solve large sparse n × n symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k × k (2, 2) block is non zero and small (k ≪ n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel null-space approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-21
Author(s):  
C. P. Hsu ◽  
C. F. Hung ◽  
J. Y. Liao

We proposed a Chebyshev spectral method with a null space approach for investigating the boundary-value problem of a nonprismatic Euler-Bernoulli beam with generalized boundary or interface conditions. It is shown here that, with few vital improvements, a Chebyshev spectral collocation approach can be systematically applied to modeling nonprismatic Euler-Bernoulli beams with eigenvalue embedded tip-massed boundary conditions as well as the jump conditions that appear at the stepped interfaces. This study also presents a numerical stable asymptotic modal solution for the higher-order modes of a partially clamped beam and show that the proposed approach validates the robust higher-order modal solutions. Through a sequence of four increasingly complicated examples, using the proposed approach with higher-order modes, generalized boundary conditions, and interface jump conditions of nonprismatic beams, the results are in excellent agreement with those reported in the literature using various other approaches.


Author(s):  
Claudio Rosales ◽  
Daniel Gandolfo ◽  
Mario Sarcinelli-Filho ◽  
Ricardo Carelli

Sign in / Sign up

Export Citation Format

Share Document