nuclear norm
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 185)

H-INDEX

31
(FIVE YEARS 7)

2021 ◽  
pp. 1-14
Author(s):  
Qingjiang Xiao ◽  
Shiqiang Du ◽  
Yao Yu ◽  
Yixuan Huang ◽  
Jinmei Song

In recent years, tensor-Singular Value Decomposition (t-SVD) based tensor nuclear norm has achieved remarkable progress in multi-view subspace clustering. However, most existing clustering methods still have the following shortcomings: (a) It has no meaning in practical applications for singular values to be treated equally. (b) They often ignore that data samples in the real world usually exist in multiple nonlinear subspaces. In order to solve the above shortcomings, we propose a hyper-Laplacian regularized multi-view subspace clustering model that joints representation learning and weighted tensor nuclear norm constraint, namely JWHMSC. Specifically, in the JWHMSC model, firstly, in order to capture the global structure between different views, the subspace representation matrices of all views are stacked into a low-rank constrained tensor. Secondly, hyper-Laplace graph regularization is adopted to preserve the local geometric structure embedded in the high-dimensional ambient space. Thirdly, considering the prior information of singular values, the weighted tensor nuclear norm (WTNN) based on t-SVD is introduced to treat singular values differently, which makes the JWHMSC more accurately obtain the sample distribution of classification information. Finally, representation learning, WTNN constraint and hyper-Laplacian graph regularization constraint are integrated into a framework to obtain the overall optimal solution of the algorithm. Compared with the state-of-the-art method, the experimental results on eight benchmark datasets show the good performance of the proposed method JWHMSC in multi-view clustering.


IET Software ◽  
2021 ◽  
Author(s):  
Qingan Huang ◽  
Le Ma ◽  
Siyu Jiang ◽  
Guobin Wu ◽  
Hengjie Song ◽  
...  

2021 ◽  
Vol 67 ◽  
pp. 102688
Author(s):  
Fuhao Yu ◽  
Jian Li ◽  
Xinxin Zhou ◽  
Tao Yu ◽  
Yang Xu ◽  
...  

Author(s):  
Christian Grussler ◽  
Pontus Giselsson

AbstractLow-rank inducing unitarily invariant norms have been introduced to convexify problems with a low-rank/sparsity constraint. The most well-known member of this family is the so-called nuclear norm. To solve optimization problems involving such norms with proximal splitting methods, efficient ways of evaluating the proximal mapping of the low-rank inducing norms are needed. This is known for the nuclear norm, but not for most other members of the low-rank inducing family. This work supplies a framework that reduces the proximal mapping evaluation into a nested binary search, in which each iteration requires the solution of a much simpler problem. The simpler problem can often be solved analytically as demonstrated for the so-called low-rank inducing Frobenius and spectral norms. The framework also allows to compute the proximal mapping of increasing convex functions composed with these norms as well as projections onto their epigraphs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ali Ghanbari Sorkhi ◽  
Zahra Abbasi ◽  
Majid Iranpour Mobarakeh ◽  
Jamshid Pirgazi

Abstract Background Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug–target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates. Results In this paper, a new approach based on unifying matrix factorization and nuclear norm minimization is proposed to find a low-rank interaction. In this combined method, to solve the low-rank matrix approximation, the terms in the DTI problem are used in such a way that the nuclear norm regularized problem is optimized by a bilinear factorization based on Rank-Restricted Soft Singular Value Decomposition (RRSSVD). In the proposed method, adjacencies between drugs and targets are encoded by graphs. Drug–target interaction, drug-drug similarity, target-target, and combination of similarities have also been used as input. Conclusions The proposed method is evaluated on four benchmark datasets known as Enzymes (E), Ion channels (ICs), G protein-coupled receptors (GPCRs) and nuclear receptors (NRs) based on AUC, AUPR, and time measure. The results show an improvement in the performance of the proposed method compared to the state-of-the-art techniques.


Author(s):  
A. H. Bentbib ◽  
A. El Hachimi ◽  
K. Jbilou ◽  
A. Ratnani

Sign in / Sign up

Export Citation Format

Share Document