nonparametric likelihood
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 1-24
Author(s):  
Lorenzo Camponovo ◽  
Yukitoshi Matsushita ◽  
Taisuke Otsu

This paper develops a new test statistic for parameters defined by moment conditions that exhibits desirable relative error properties for the approximation of tail area probabilities. Our statistic, called the tilted exponential tilting (TET) statistic, is constructed by estimating certain cumulant generating functions under exponential tilting weights. We show that the asymptotic p-value of the TET statistic can provide an accurate approximation to the p-value of an infeasible saddlepoint statistic, which admits a Lugannani–Rice style adjustment with relative errors of order n−1 both in normal and large deviation regions. Numerical results illustrate the accuracy of the proposed TET statistic. Our results cover both just- and overidentified moment condition models. A limitation of our analysis is that the theoretical approximation results are exclusively for the infeasible saddlepoint statistic, and closeness of the p-values for the infeasible statistic to the ones for the feasible TET statistic is only numerically assessed.


2019 ◽  
Vol 36 (4) ◽  
pp. 626-657 ◽  
Author(s):  
Yukitoshi Matsushita ◽  
Taisuke Otsu

Hahn and Ridder (2013, Econometrica 81, 315–340) formulated influence functions of semiparametric three-step estimators where generated regressors are computed in the first step. This class of estimators covers several important examples for empirical analysis, such as production function estimators by Olley and Pakes (1996, Econometrica 64, 1263–1297) and propensity score matching estimators for treatment effects by Heckman, Ichimura, and Todd (1998, Review of Economic Studies 65, 261–294). The present article studies a nonparametric likelihood-based inference method for the parameters in such three-step estimation problems. In particular, we apply the general empirical likelihood theory of Bravo, Escanciano, and van Keilegom (2018, Annals of Statistics, forthcoming) to modify semiparametric moment functions to account for influences from plug-in estimates into the above important setup, and show that the resulting likelihood ratio statistic becomes asymptotically pivotal without undersmoothing in the first and second step nonparametric estimates.


2019 ◽  
Vol 38 (2) ◽  
pp. 121
Author(s):  
Zbynek Pawlas ◽  
Marketa Zikmundova

We study nonparametric estimation of the length distribution for stationary line segment processes in the d-dimensional Euclidean space. Several methods have been proposed in the literature. We review different approaches (Horvitz-Thompson type estimator, reduced-sample estimator, Kaplan-Meier estimator, nonparametric maximum likelihood estimator, stochastic restoration estimation) and compare the finite sample behaviour by means of a simulation study for stationary line segment processes in 2D and 3D. Several data generating processes (Poisson point process, Matérn cluster process and Matérn hard-core process II) are considered with both independent and dependent segments. Our finite sample comparison reveals that the nonparametric likelihood estimator provides the most preferable method which works reasonably also if its assumptions are not satisfied. 


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 559 ◽  
Author(s):  
Shixiao W. Jiang ◽  
John Harlim

In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kernel embedding of the conditional distribution. To respect the geometry of the data, we employ this spectral expansion using a set of data-driven basis functions obtained from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of the approximate data-driven likelihood function is independent of the variance of the basis functions, which allows us to determine the amount of training data for accurate likelihood function estimations. Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions for parameter estimation are given on instructive examples involving stochastic and deterministic differential equations. When the dimension of the data manifold is strictly less than the dimension of the ambient space, we found that the proposed approach (which does not require the knowledge of the data manifold) is superior compared to likelihood functions constructed using standard parametric basis functions defined on the ambient coordinates. In an example where the data manifold is not smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection. In fact, the estimation accuracy is comparable to direct MCMC estimates with only eight likelihood function evaluations that can be done offline as opposed to 4000 sequential function evaluations, whenever direct MCMC can be performed. A robust accurate estimation is also found using a likelihood function trained on statistical averages of the chaotic 40-dimensional Lorenz-96 model on a wide parameter domain.


2017 ◽  
Vol 145 (7) ◽  
pp. 2833-2853 ◽  
Author(s):  
Tyrus Berry ◽  
John Harlim

While the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications model error with nontrivial biases is unavoidable. A practical example is errors in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. Together with the dynamical model error, the result is that many (in fact 99%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme that is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, positive results are shown with two examples. The first example is designed to produce a bimodality in the observation model error (typical of “cloudy” observations) by introducing obstructions to the observations that occur randomly in space and time. The second example, which is physically more realistic, is to assimilate cloudy satellite brightness temperature–like quantities, generated from a stochastic multicloud model for tropical convection and a simple radiative transfer model.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Oluyemi Oyeniran ◽  
Hanfeng Chen

The problem of estimating the proportion, π0, of the true null hypotheses in a multiple testing problem is important in cases where large scale parallel hypotheses tests are performed independently. While the problem is a quantity of interest in its own right in applications, the estimate of π0 can be used for assessing or controlling an overall false discovery rate. In this article, we develop an innovative nonparametric maximum likelihood approach to estimate π0. The nonparametric likelihood is proposed to be restricted to multinomial models and an EM algorithm is also developed to approximate the estimate of π0. Simulation studies show that the proposed method outperforms other existing methods. Using experimental microarray datasets, we demonstrate that the new method provides satisfactory estimate in practice.


Sign in / Sign up

Export Citation Format

Share Document