nuclease resistance
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
pp. 100231
Author(s):  
Ryo Tsukimura ◽  
Ryohei Kajino ◽  
Yujun Zhou ◽  
Akash Chandela ◽  
Yoshihito Ueno

2021 ◽  
Vol 43 (3) ◽  
pp. 1267-1281
Author(s):  
Kentaro Ito ◽  
Hideo Takakusa ◽  
Masayo Kakuta ◽  
Akira Kanda ◽  
Nana Takagi ◽  
...  

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.


2021 ◽  
Vol 22 (17) ◽  
pp. 9510
Author(s):  
Kévan Pérez de Carvasal ◽  
Claudia Riccardi ◽  
Irene Russo Krauss ◽  
Domenico Cavasso ◽  
Jean-Jacques Vasseur ◽  
...  

In the search for optimized thrombin binding aptamers (TBAs), we herein describe the synthesis of a library of TBA analogues obtained by end-functionalization with the electron-rich 1,5-dialkoxy naphthalene (DAN) and the electron-deficient 1,8,4,5-naphthalenetetra-carboxylic diimide (NDI) moieties. Indeed, when these G-rich oligonucleotides were folded into the peculiar TBA G-quadruplex (G4) structure, effective donor–acceptor charge transfer interactions between the DAN and NDI residues attached to the extremities of the sequence were induced, providing pseudo-cyclic structures. Alternatively, insertion of NDI groups at both extremities produced TBA analogues stabilized by π–π stacking interactions. All the doubly-modified TBAs were characterized by different biophysical techniques and compared with the analogues carrying only the DAN or NDI residue and unmodified TBA. These modified TBAs exhibited higher nuclease resistance, and their G4 structures were markedly stabilized, as evidenced by increased Tm values compared to TBA. These favorable properties were also associated with improved anticoagulant activity for one DAN/NDI-modified TBA, and for one NDI/NDI-modified TBA. Our results indicated that TBA pseudo-cyclic structuring by ad hoc designed end-functionalization represents an efficient approach to improve the aptamer features, while pre-organizing and stabilizing the G4 structure but allowing sufficient flexibility to the aptamer folding, which is necessary for optimal thrombin recognition.


2021 ◽  
Author(s):  
Ryutaro Yoshikawa ◽  
Atsushi Maeda ◽  
Yoshihito Ueno ◽  
Hiroki Sakai ◽  
Shintaro Kimura ◽  
...  

Abstract Canine hemangiosarcoma (HSA) has extremely poor prognosis, making it necessary to develop new systemic treatment methods. MicroRNA-214 (miR-214) is one of many microRNAs (miRNA) that can induce apoptosis in HSA cell lines. Synthetic miR-214 (miR-214/5AE), which showed higher cytotoxicity and greater nuclease resistance than mature miR-214, has been developed for clinical application. In this study, we evaluated the effects of miR-214/5AE on stage 2 HSA in a mouse model. Mice intraperitoneally administered with miR-214/5AE (5AE group) had significantly fewer intraperitoneal dissemination tumor foci (median number: 80 vs. 233; p < 0.05) and lighter median foci weight (0.26 g vs. 0.74 g; p < 0.05). There was an increase in p53 and cleaved caspase-3 expression in the 5AE group. The mice in this group also had a significantly lower proportion of Ki-67-positive cells than those in the non-specific miR group. Notably, there were no significant side effects observed. These results indicate that intraperitoneal administration of miR-214/5AE exhibits antitumor effects in the intraperitoneal dissemination mouse model of HSA by inducing apoptosis and suppressing cell proliferation. We strongly believe that miR-214/5AE could be a novel miRNA-based chemotherapeutic agent capable of improving the prognosis of HSA.


2021 ◽  
Vol 17 ◽  
pp. 1828-1848
Author(s):  
Mathias B Danielsen ◽  
Jesper Wengel

Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1067
Author(s):  
Ting Li ◽  
Fengjiao Yao ◽  
Yacong An ◽  
Xundou Li ◽  
Jinhong Duan ◽  
...  

Blocking the PD-1/PD-L1 pathway can diminish immunosuppression and enhance anticancer immunity. PD-1/PD-L1 blockade can be realized by aptamers, which have good biocompatibility and can be synthesized in quantity economically. For in vivo applications, aptamers need to evade renal clearance and nuclease digestion. Here we investigated whether DNA nanostructures could be used to enhance the function of PD-L1 aptamers. Four PD-L1 aptamers (Apt) were built into a Holliday Junction (HJ) to form a tetravalent DNA nanostructure (Apt-HJ). The average size of Apt-HJ was 13.22 nm, which was above the threshold for renal clearance. Apt-HJ also underwent partial phosphorothioate modification and had improved nuclease resistance. Compared with the monovalent PD-L1 aptamer, the tetravalent Apt-HJ had stronger affinity to CT26 colon cancer cells. Moreover, Apt-HJ markedly boosted the antitumor efficacy in vivo vs. free PD-L1 aptamers without raising systemic toxicity. The results indicate that multiple aptamers attached to a DNA nanostructure may significantly improve the function of PD-L1 aptamers in vivo.


2021 ◽  
Author(s):  
Chen-Hsu Yu ◽  
Adam M. Kabza ◽  
Jonathan Sczepanski

Due to their intrinsic nuclease resistance, L-oligonucleotides are being increasingly utilized in the development of molecular tools and sensors. Yet, it remains challenging to synthesize long L-oligonucleotides, potential limiting future...


2020 ◽  
pp. 153537022097397
Author(s):  
Maria Troisi ◽  
Mitchell Klein ◽  
Andrew C Smith ◽  
Gaston Moorhead ◽  
Yonatan Kebede ◽  
...  

The objectives of this study are to evaluate the structure and protein recognition features of branched DNA four-way junctions in an effort to explore the therapeutic potential of these molecules. The classic immobile DNA 4WJ, J1, is used as a matrix to design novel intramolecular junctions including natural and phosphorothioate bonds. Here we have inserted H2-type mini-hairpins into the helical termini of the arms of J1 to generate four novel intramolecular four-way junctions. Hairpins are inserted to reduce end fraying and effectively eliminate potential nuclease binding sites. We compare the structure and protein recognition features of J1 with four intramolecular four-way junctions: i-J1, i-J1(PS1), i-J1(PS2) and i-J1(PS3). Circular dichroism studies suggest that the secondary structure of each intramolecular 4WJ is composed predominantly of B-form helices. Thermal unfolding studies indicate that intramolecular four-way junctions are significantly more stable than J1. The Tm values of the hairpin four-way junctions are 25.2° to 32.2°C higher than the control, J1. With respect to protein recognition, gel shift assays reveal that the DNA-binding proteins HMGBb1 and HMGB1 bind the hairpin four-way junctions with affinity levels similar to control, J1. To evaluate nuclease resistance, four-way junctions are incubated with DNase I, exonuclease III (Exo III) and T5 exonuclease (T5 Exo). The enzymes probe nucleic acid cleavage that occurs non-specifically (DNase I) and in a 5ʹ→3ʹ (T5 Exo) and 3ʹ→5ʹ direction (Exo III). The nuclease digestion assays clearly show that the intramolecular four-way junctions possess significantly higher nuclease resistance than the control, J1.


Sign in / Sign up

Export Citation Format

Share Document