strain selection
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 38)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunpeng Sun ◽  
Houfang Long ◽  
Wencheng Xia ◽  
Kun Wang ◽  
Xia Zhang ◽  
...  

Abstractα-Synuclein (α-Syn) can form different fibril strains with distinct polymorphs and neuropathologies, which is associated with the clinicopathological variability in synucleinopathies. How different α-syn fibril strains are produced and selected under disease conditions remains poorly understood. In this study, we show that the hereditary mutation G51D induces α-syn to form a distinct fibril strain in vitro. The cryogenic electron microscopy (cryo-EM) structure of the G51D fibril strain was determined at 2.96 Å resolution. The G51D fibril displays a relatively small and extended serpentine fold distinct from other α-syn fibril structures. Moreover, we show by cryo-EM that wild-type (WT) α-syn can assembly into the G51D fibril strain via cross-seeding with G51D fibrils. Our study reveals a distinct structure of G51D fibril strain triggered by G51D mutation but feasibly adopted by both WT and G51D α-syn, which suggests the cross-seeding and strain selection of WT and mutant α-syn in familial Parkinson’s disease (fPD).


2021 ◽  
Author(s):  
Björn Andersson ◽  
Anna Godhe ◽  
Helena L. Filipsson ◽  
Linda Zetterholm ◽  
Lars Edler ◽  
...  

AbstractDespite widespread metal pollution of coastal ecosystems, little is known of its effect on marine phytoplankton. We designed a co-cultivation experiment to test if toxic dose–response relationships can be used to predict the competitive outcome of two species under metal stress. Specifically, we took into account intraspecific strain variation and selection. We used 72 h dose–response relationships to model how silver (Ag), cadmium (Cd), and copper (Cu) affect both intraspecific strain selection and competition between taxa in two marine diatoms (Skeletonema marinoi and Thalassiosira baltica). The models were validated against 10-day co-culture experiments, using four strains per species. In the control treatment, we could predict the outcome using strain-specific growth rates, suggesting low levels of competitive interactions between the species. Our models correctly predicted which species would gain a competitive advantage under toxic stress. However, the absolute inhibition levels were confounded by the development of chronic toxic stress, resulting in a higher long-term inhibition by Cd and Cu. We failed to detect species differences in average Cu tolerance, but the model accounting for strain selection accurately predicted a competitive advantage for T. baltica. Our findings demonstrate the importance of incorporating multiple strains when determining traits and when performing microbial competition experiments.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009748
Author(s):  
Jifeng Bian ◽  
Sehun Kim ◽  
Sarah J. Kane ◽  
Jenna Crowell ◽  
Julianna L. Sun ◽  
...  

Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission.


2021 ◽  
Author(s):  
Jin Gao ◽  
Xing Li ◽  
Hongquan Wan ◽  
Zhiping Ye ◽  
Robert Daniels

Neuraminidase (NA or N) antigens in circulating influenza viruses are not extensively evaluated for vaccine strain selection like hemagglutinin (HA or H) even though viral-based influenza vaccines include the recommended strain NA in varying amounts. As NA can also elicit a protective response, we assessed the antigenic similarity of the NAs from human H1N1 and H3N2 viruses that were prevalent between September 2019 to December 2020 to NAs from several recently recommended vaccine strains. To eliminate the dependence on isolates, the enzyme-linked lectin assay for analyzing NA antigenicity was performed with reverse genetic viruses carrying the same HA. Our results show that ferret antisera against NAs from the recommended H1N1 and H3N2 vaccine strains for the 2020-21 northern hemisphere influenza season recognize and inhibit the most prevalent circulating N1s and N2s, suggesting the NAs from the influenza A vaccine and circulating strains are antigenically similar. Comparisons of the recent N2s also revealed a bias in the reactivity of NA antisera from the egg and cell-based H3N2 vaccine strains due to a C-terminal substitution, indicating the C-terminus can influence N2 antigenicity and should receive consideration during the H3N2 strain selection.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 387
Author(s):  
Yimei Cao ◽  
Kun Li ◽  
Xiangchuan Xing ◽  
Huifang Bao ◽  
Nana Huang ◽  
...  

Foot-and-mouth disease (FMD) is a highly contagious disease and one of the most economically important diseases of livestock. Vaccination is an important measure to control FMD and selection of appropriate vaccine strains is crucial. The objective of this study was to select a vaccine candidate and to evaluate the potential of a blocking ELISA for detecting neutralizing antibodies (NA-ELISA) in vaccine strain selection. Binary ethylenimine inactivated vaccines, prepared from four representative circulating strains (FMDV O/Mya/98, SCGH/CHA/2016, O/Tibet/99, and O/XJ/CHA/2017) belonging to four lineages within three different topotypes of FMD virus (FMDV) serotype O in China, were used to vaccinate cattle (12–13 animals for each strain), sheep (12–13 animals for each strain), and pigs (10 animals for each strain). The results of immunogenicity comparison showed that O/XJ/CHA/2017 exhibited the highest immunogenicity among the four strains in pigs, cattle, and sheep both by NA-ELISA and virus neutralizing test (VNT). Cross-neutralization analysis indicated that O/XJ/CHA/2017 displayed broad antigen spectrum and was antigenically matched with other three representative strains both by NA-ELISA and VNT. In addition, A significant correlation (p < 0.0001) was observed between the NA-ELISA titers and the VNT titers for four representative strains. The results showed that O/XJ/CHA/2017 was a promising vaccine strain candidate and NA-ELISA was comparable to VNT in neutralizing antibodies detection and could be used as the reference test system for vaccine strain selection.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 400
Author(s):  
Sarah N. Wilson ◽  
Krisangel López ◽  
Sheryl Coutermash-Ott ◽  
Dawn I. Auguste ◽  
Danielle L. Porier ◽  
...  

La Crosse virus (LACV) is the leading cause of pediatric viral encephalitis in North America, and is an important public health pathogen. Historically, studies involving LACV pathogenesis have focused on lineage I strains, but no former work has explored the pathogenesis between or within lineages. Given the absence of LACV disease in endemic regions where a robust entomological risk exists, we hypothesize that some LACV strains are attenuated and demonstrate reduced neuroinvasiveness. Herein, we compared four viral strains representing all three lineages to determine differences in neurovirulence or neuroinvasiveness using three murine models. A representative strain from lineage I was shown to be the most lethal, causing >50% mortality in each of the three mouse studies. However, other strains only presented excessive mortality (>50%) within the suckling mouse neurovirulence model. Neurovirulence was comparable among strains, but viruses differed in their neuroinvasive capacities. Our studies also showed that viruses within lineage III vary in pathogenesis with contemporaneous strains, showing reduced neuroinvasiveness compared to an ancestral strain from the same U.S. state (i.e., Connecticut). These findings demonstrate that LACV strains differ markedly in pathogenesis, and that strain selection is important for assessing vaccine and therapeutic efficacies.


Sign in / Sign up

Export Citation Format

Share Document