discrete maps
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Florian Stelzer ◽  
Serhiy Yanchuk

AbstractA single dynamical system with time-delayed feedback can emulate networks. This property of delay systems made them extremely useful tools for Machine-Learning applications. Here, we describe several possible setups, which allow emulating multilayer (deep) feed-forward networks as well as recurrent networks of coupled discrete maps with arbitrary adjacency matrix by a single system with delayed feedback. While the network’s size can be arbitrary, the generating delay system can have a low number of variables, including a scalar case.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1177
Author(s):  
Vasily E. Tarasov

In this paper, we use integral equations of non-integer orders to derive discrete maps with memory. Note that discrete maps with memory were not previously derived from fractional integral equations of non-integer orders. Such a derivation of discrete maps with memory is proposed for the first time in this work. In this paper, we derived discrete maps with nonlocality in time and memory from exact solutions of fractional integral equations with the Riemann–Liouville and Hadamard type fractional integrals of non-integer orders and periodic sequence of kicks that are described by Dirac delta-functions. The suggested discrete maps with nonlocality in time are derived from these fractional integral equations without any approximation and can be considered as exact discrete analogs of these equations. The discrete maps with memory, which are derived from integral equations with the Hadamard type fractional integrals, do not depend on the period of kicks.


2021 ◽  
Vol 26 (3) ◽  
pp. 419-439
Author(s):  
Roberta Hansen ◽  
Graciela A. González

Based on existing feedback control methods such as OGY and Pyragas, alternative new schemes are proposed for stabilization of unstable periodic orbits of chaotic and hyperchaotic dynamical systems by suitable modulation of a control parameter. Their performances are improved with respect to: (i) robustness, (ii) rate of convergences, (iii) reduction of waiting time, (iv) reduction of noise sensitivity. These features are analytically investigated, the achievements are rigorously proved and supported by numerical simulations. The proposed methods result successful for stabilizing unstable periodic orbits in some classical discrete maps like 1-D logistic and standard 2-D Hénon, but also in the hyperchaotic generalized n-D Hénon-like maps.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

Abstract In this paper, the semi-analytical method of implicit discrete maps is employed to investigate the nonlinear dynamical behavior of a nonlinear spring pendulum. The implicit discrete maps are developed through the midpoint scheme of the corresponding differential equations of a nonlinear spring pendulum system. Using discrete mapping structures, different periodic motions are obtained for the bifurcation trees. With varying excitation amplitude, a bifurcation tree of period-1 motion to chaos is achieved through the bifurcation tree of period-1 to period-2 motions. The corresponding stability and bifurcations are studied through eigenvalue analysis. Finally, numerical illustrations of periodic motions are obtained numerically and analytically.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 434 ◽  
Author(s):  
Valery Andreev ◽  
Valerii Ostrovskii ◽  
Timur Karimov ◽  
Aleksandra Tutueva ◽  
Elena Doynikova ◽  
...  

In many tasks related to realistic neurons and neural network simulation, the performance of desktop computers is nowhere near enough. To overcome this obstacle, researchers are developing FPGA-based simulators that naturally use fixed-point arithmetic. In these implementations, little attention is usually paid to the choice of numerical method for the discretization of the continuous neuron model. In our study, the implementation accuracy of a neuron described by simplified Hodgkin–Huxley equations in fixed-point arithmetic is under investigation. The principle of constructing a fixed-point neuron model with various numerical methods is described. Interspike diagrams and refractory period analysis are used for the experimental study of the synthesized discrete maps of the simplified Hodgkin–Huxley neuron model. We show that the explicit midpoint method is much better suited to simulate the neuron dynamics on an FPGA than the explicit Euler method which is in common use.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

Abstract In this paper, with varying excitation frequency, period-1 motions to chaos in a parametrically driven pendulum are presented through period-1 to period-4 motions. Using the implicit discrete maps of the corresponding differential equations, discrete mapping structures are developed for different periodic motions, and the corresponding nonlinear algebraic equations of such mapping structures are solved for analytical predictions of bifurcation trees of periodic motions. Both period-1 static points to period-2 motions and period-1 motions to period-4 motions are illustrated. The corresponding stability and bifurcations are studied. Finally, numerical illustrations of various periodic motions on the bifurcation trees are presented in verification of the analytical prediction.


Sign in / Sign up

Export Citation Format

Share Document