markov switching models
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2346
Author(s):  
Oscar V. De la Torre-Torres ◽  
Dora Aguilasocho-Montoya ◽  
José Álvarez-García

In the present paper, we extend the current literature in algorithmic trading with Markov-switching models with generalized autoregressive conditional heteroskedastic (MS-GARCH) models. We performed this by using asymmetric log-likelihood functions (LLF) and variance models. From 2 January 2004 to 19 March 2021, we simulated 36 institutional investor’s portfolios. These used homogenous (either symmetric or asymmetric) Gaussian, Student’s t-distribution, or generalized error distribution (GED) and (symmetric or asymmetric) GARCH variance models. By including the impact of stock trading fees and taxes, we found that an institutional investor could outperform the S&P 500 stock index (SP500) if they used the suggested trading algorithm with symmetric homogeneous GED LLF and an asymmetric E-GARCH variance model. The trading algorithm had a simple rule, that is, to invest in the SP500 if the forecast probability of being in a calm or normal regime at t + 1 is higher than 50%. With this configuration in the MS-GARCH model, the simulated portfolios achieved a 324.43% accumulated return, of which the algorithm generated 168.48%. Our results contribute to the discussion on using MS-GARCH models in algorithmic trading with a combination of either symmetric or asymmetric pdfs and variance models.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Majid Javari

AbstractThis paper represents the recurrence (reoccurrence) changes in the rainfall series using Markov Switching models (MSM). The switching employs a dynamic pattern that allows a linear model to be combined with nonlinearity models a discrete structure. The result is the Markov Switching models (MSM) reoccurrence predicting technique. Markov Switching models (MSM) were employed to analyze rainfall reoccurrence with spatiotemporal regime probabilities. In this study, Markov Switching models (MSM) were used based on the simple exogenous probability frame by identifying a first-order Markov process for the regime probabilities. The Markov transition matrix and regime probabilities were used to analyze the rainfall reoccurrence in 167 synoptic and climatology stations. The analysis results show a low distribution from 0.0 to 0.2 (0–20%) per day spatially from selecting stations, probability mean of daily rainfall recurrence is 0.84, and a different distribution based on the second regime was found to be more remarkable to the rainfall variability. The rainfall reoccurrence in daily rainfall was estimated with relatively low variability and strong reoccurrence daily with ranged from 0.851 to 0.995 (85.1–99.5%) per day based on the spatial distribution. The variability analysis of rainfall in the intermediate and long variability and irregular variability patterns would be helpful for the rainfall variability for environmental planning.


2021 ◽  
Vol 5 (1) ◽  
pp. 34
Author(s):  
Armand Taranco ◽  
Vincent Geronimi

This paper presents an analysis of the long-term dynamics of the terms of trade of primary commodities (TTPC) using an extended data set for the whole period 1900–2020. Following our original contribution, we implement three approaches of time series—the finite mixture of distributions, the Markov finite mixture of distributions, and the Markov regime-switching model. Our results confirm the hypothesis of the existence of a succession of three different dynamic regimes in the TTPC over the 1900–2020 period. It seems that the uncertainty characterising the long-term dynamic analysis of TTPC is better taken into account with a Markov hypothesis in the transition from one regime to another than without this hypothesis. In addition, this hypothesis improves the quality of the time series segmentation into regimes.


2021 ◽  
Author(s):  
Enrique Bátiz-Zuk ◽  
José Luis Lara Sánchez

This paper analyzes the monthly evolution of bank competition in Mexico from 2008 to 2019 using different measures. Subsequently, we analyze whether the 2014 financial reform had an effect on some of our competition measures. We use ordinary and quantile regression techniques and Markov switching models to identify changes in regimes. We find partial empirical evidence supporting the idea that the reform had a positive average effect and increased banks competition intensity during a few years. However, we also document heterogeneity as some large banks benefited from an increase in their market power. We perform several robustness tests and report that our measures lead to values that are congruent and similar to those available in the literature. The main policy lesson of our research is that regulators could benefit from the monitoring of competition evolution using a finer time frequency.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Oscar V. De la Torre-Torres ◽  
Evaristo Galeana-Figueroa ◽  
José Álvarez-García

In the present paper, we test the benefit of using Markov-Switching models and volatility futures diversification in a Euro-based stock portfolio. With weekly data of the Eurostoxx 50 (ESTOXX50) stock index, we forecasted the smoothed regime-specific probabilities at T + 1 and used them as the weighting method of a diversified portfolio in ESTOXX50 and ESTOSS50 volatility index (VSTOXX) futures. With the estimated smoothed probabilities from 9 July 2009 to 29 September 2020, we simulated the performance of three theoretical investors who paid different trading costs and invested in ESTOXX50 during calm periods (low volatility regime) or VSTOXX futures and the three-month German treasury bills in distressed or highly distressed periods (high and extreme volatility regimes). Our results suggest that diversification benefits hold in the short-term, but if a given investor manages a two-asset portfolio with ESTOXX50 and our simulated portfolios, the stock portfolio’s performance is enhanced significantly, in the long term, with the presence of trading costs. These results are of use to practitioners for algorithmic and active trading applications in ESTOXX50 ETFs and VSTOXX futures.


Author(s):  
Yong Song ◽  
Tomasz Woźniak

Markov switching models are a family of models that introduces time variation in the parameters in the form of their state, or regime-specific values. This time variation is governed by a latent discrete-valued stochastic process with limited memory. More specifically, the current value of the state indicator is determined by the value of the state indicator from the previous period only implying the Markov property. A transition matrix characterizes the properties of the Markov process by determining with what probability each of the states can be visited next period conditionally on the state in the current period. This setup decides on the two main advantages of the Markov switching models: the estimation of the probability of state occurrences in each of the sample periods by using filtering and smoothing methods and the estimation of the state-specific parameters. These two features open the possibility for interpretations of the parameters associated with specific regimes combined with the corresponding regime probabilities. The most commonly applied models from this family are those that presume a finite number of regimes and the exogeneity of the Markov process, which is defined as its independence from the model’s unpredictable innovations. In many such applications, the desired properties of the Markov switching model have been obtained either by imposing appropriate restrictions on transition probabilities or by introducing the time dependence of these probabilities determined by explanatory variables or functions of the state indicator. One of the extensions of this basic specification includes infinite hidden Markov models that provide great flexibility and excellent forecasting performance by allowing the number of states to go to infinity. Another extension, the endogenous Markov switching model, explicitly relates the state indicator to the model’s innovations, making it more interpretable and offering promising avenues for development.


Author(s):  
Megan Morrison ◽  
Charles Fieseler ◽  
J. Nathan Kutz

Recent whole-brain calcium imaging recordings of the nematode C. elegans have demonstrated that the neural activity associated with behavior is dominated by dynamics on a low-dimensional manifold that can be clustered according to behavioral states. Previous models of C. elegans dynamics have either been linear models, which cannot support the existence of multiple fixed points in the system, or Markov-switching models, which do not describe how control signals in C. elegans neural dynamics can produce switches between stable states. It remains unclear how a network of neurons can produce fast and slow timescale dynamics that control transitions between stable states in a single model. We propose a global, nonlinear control model which is minimally parameterized and captures the state transitions described by Markov-switching models with a single dynamical system. The model is fit by reproducing the timeseries of the dominant PCA mode in the calcium imaging data. Long and short time-scale changes in transition statistics can be characterized via changes in a single parameter in the control model. Some of these macro-scale transitions have experimental correlates to single neuro-modulators that seem to act as biological controls, allowing this model to generate testable hypotheses about the effect of these neuro-modulators on the global dynamics. The theory provides an elegant characterization of control in the neuron population dynamics in C. elegans. Moreover, the mathematical structure of the nonlinear control framework provides a paradigm that can be generalized to more complex systems with an arbitrary number of behavioral states.


Sign in / Sign up

Export Citation Format

Share Document