colored version
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 7 ◽  
pp. e466
Author(s):  
Shantanu Das ◽  
Giuseppe Antonio Di Luna ◽  
Daniele Mazzei ◽  
Giuseppe Prencipe

In this paper we investigate dynamic networks populated by autonomous mobile agents. Dynamic networks are networks whose topology can change continuously, at unpredictable locations and at unpredictable times. These changes are not considered to be faults, but rather an integral part of the nature of the system. The agents can autonomously move on the network, with the goal of solving cooperatively an assigned common task. Here, we focus on a specific network: the unoriented ring. More specifically, we study 1-interval connected dynamic rings (i.e., at any time, at most one of the edges might be missing). The agents move according to the widely used Look–Compute–Move life cycle, and can be homogenous (thus identical) or heterogenous (agents are assigned colors from a set of c > 1 colors). For identical agents, their goal is to form a compact segment, where agents occupy a continuous part of the ring and no two agents occupy the same node: we call this the Compact Configuration Problem. In the case of agents with colors, called the Colored Compact Configuration Problem, the goal is to group agents such that each group is formed by all agents having the same color, it occupies a continuous segment of the network, and groups of agents having different colors occupy distinct areas of the network. In this paper we determine the necessary conditions to solve both proposed problems. For all solvable cases, we provide algorithms for both the monochromatic and the colored version of the compact configuration problem. All our algorithms work even for the simplest model where agents have no persistent memory, no communication capabilities and do not agree on a common orientation within the network. To the best of our knowledge this is the first work on the compaction problem in a dynamic network.


10.37236/6516 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Megumi Asada ◽  
Ryan Chen ◽  
Florian Frick ◽  
Frederick Huang ◽  
Maxwell Polevy ◽  
...  

Reay's relaxed Tverberg conjecture and Conway's thrackle conjecture are open problems about the geometry of pairwise intersections. Reay asked for the minimum number of points in Euclidean $d$-space that guarantees any such point set admits a partition into $r$ parts, any $k$ of whose convex hulls intersect. Here we give new and improved lower bounds for this number, which Reay conjectured to be independent of $k$. We prove a colored version of Reay's conjecture for $k$ sufficiently large, but nevertheless $k$ independent of dimension $d$. Pairwise intersecting convex hulls have severely restricted combinatorics. This is a higher-dimensional analogue of Conway's thrackle conjecture or its linear special case. We thus study convex-geometric and higher-dimensional analogues of the thrackle conjecture alongside Reay's problem and conjecture (and prove in two special cases) that the number of convex sets in the plane is bounded by the total number of vertices they involve whenever there exists a transversal set for their pairwise intersections. We thus isolate a geometric property that leads to bounds as in the thrackle conjecture. We also establish tight bounds for the number of facets of higher-dimensional analogues of linear thrackles and conjecture their continuous generalizations.


Author(s):  
Joel R. Bock

Synesthesia is a psychological phenomenon where sensory signals become mixed. Input to one sensory modality produces an experience in a second, unstimulated modality. In “grapheme-color synesthesia”, viewed letters and numbers evoke mental imagery of colors. The study of this condition has implications for increasing our understanding of brain architecture and function, language, memory and semantics, and the nature of consciousness. In this work, we propose a novel application deep learning to model perception in grapheme-color synesthesia. Achromatic letter images, taken from database of handwritten characters, are used to induce synesthesia. Results show the model learns to accurately create a colored version of the inducing stimulus, according to a statistical distribution from experiments on a sample population of grapheme-color synesthetes. The spontaneous, creative mental imagery characteristic of the synesthetic perceptual experience is reproduced by the model. A model of synesthesia that generates testable predictions on brain activity and behavior is needed to complement large scale data collection efforts in neuroscience, especially when articulating simple descriptions of cause (stimulus) and effect (behavior). The research and modeling approach reported here begins to address this need.


2017 ◽  
Vol 82 (4) ◽  
pp. 1278-1316 ◽  
Author(s):  
VASCO BRATTKA ◽  
TAHINA RAKOTONIAINA

AbstractWe study the uniform computational content of Ramsey’s theorem in the Weihrauch lattice. Our central results provide information on how Ramsey’s theorem behaves under product, parallelization, and jumps. From these results we can derive a number of important properties of Ramsey’s theorem. For one, the parallelization of Ramsey’s theorem for cardinalityn≥ 1 and an arbitrary finite number of colorsk≥ 2 is equivalent to then-th jump of weak Kőnig’s lemma. In particular, Ramsey’s theorem for cardinalityn≥ 1 is${\bf{\Sigma }}_{n + 2}^0$-measurable in the effective Borel hierarchy, but not${\bf{\Sigma }}_{n + 1}^0$-measurable. Secondly, we obtain interesting lower bounds, for instance then-th jump of weak Kőnig’s lemma is Weihrauch reducible to (the stable version of) Ramsey’s theorem of cardinalityn+ 2 forn≥ 2. We prove that with strictly increasing numbers of colors Ramsey’s theorem forms a strictly increasing chain in the Weihrauch lattice. Our study of jumps also shows that certain uniform variants of Ramsey’s theorem that are indistinguishable from a nonuniform perspective play an important role. For instance, the colored version of Ramsey’s theorem explicitly includes the color of the homogeneous set as output information, and the jump of this problem (but not the uncolored variant) is equivalent to the stable version of Ramsey’s theorem of the next greater cardinality. Finally, we briefly discuss the particular case of Ramsey’s theorem for pairs, and we provide some new separation techniques for problems that involve jumps in this context. In particular, we study uniform results regarding the relation of boundedness and induction problems to Ramsey’s theorem, and we show that there are some significant differences with the nonuniform situation in reverse mathematics.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750038
Author(s):  
Wataru Yuasa

Kuperberg introduced web spaces for some Lie algebras which are generalizations of the Kauffman bracket skein module on a disk. We derive some formulas for [Formula: see text] and [Formula: see text] clasped web spaces by graphical calculus using skein theory. These formulas are colored version of skein relations, twist formulas and bubble skein expansion formulas. We calculate the [Formula: see text] and [Formula: see text] colored Jones polynomials of [Formula: see text]-bridge knots and links explicitly using twist formulas.


10.37236/3450 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Stephan Hell

In 2009, Blagojević, Matschke, and Ziegler established the first tight colored Tverberg theorem. We develop a colored version of our previous results (2008): Evenness and non-trivial lower bounds for the number of colored Tverberg partitions. Both properties follow from similar results on the number of colored Birch partitions.


2014 ◽  
Vol 28 (1) ◽  
pp. 18-36 ◽  
Author(s):  
Allan Lo
Keyword(s):  

COMBINATORICA ◽  
2010 ◽  
Vol 30 (1) ◽  
pp. 83-104 ◽  
Author(s):  
Claude Laflamme ◽  
Lionel Nguyen Van Thé ◽  
Norbert W. Sauer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document