displacement control method
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 921 (1) ◽  
pp. 012019
Author(s):  
M R Nur ◽  
H Parung ◽  
A A Amiruddin

Abstract Precast concrete is an answer to the demands of building structures that save time, but cannot be used widely because of the reliability of the connection, especially during an earthquake, the desired earthquake-resistant building structure must have sufficient strength and rigidity. Stiffness is one of the factors that determine the response of a structure to earthquake loads. When connected with earthquake loads, a structure must have sufficient rigidity so that its movement during an earthquake can be limited. This study aims to determine and analyze the stiffness in the double columns straight joint beam notches due to lateral cyclic load. By dividing 3 (three) types of test specimens, namely Monolithic column Beam, Type 1 Column Joint (SBK), and Type 2 Column Beam Joint (SBK). The connection used is a double straight notch and using the grouting method. Testing and analysis using the Displacement Control Method with the European Convention for Constructional Steelwork (ECCS) 1986 standards. The results showed the monolith column Column (BK) specimens have a greater stiffness value compared to SBK 1 specimens and SBK 2 specimens.


2021 ◽  
Vol 7 (4) ◽  
pp. 720-729
Author(s):  
Hence M. Wuaten ◽  
Herman Parung ◽  
A. Arwin Amiruddin ◽  
Rita Irmawaty

One way to restore or increase the strength of the structure against earthquakes is to use retrofit method and wire mesh is a material that has high prospects as retrofit material. The purpose of this study was to examine the use of wire mesh as a retrofit material on reinforced concrete columns burdened with cyclic loads. In this study, testing of 3 square column samples of reinforced concrete with dimensions of 300  300 mm. The first specimen is fully retrofit on the entire cross-section of the column, the second specimen is retrofitted on the plastic hinge area of the column and the third specimen is a control column without retrofit. In the first and second specimens were retrofitted with wire mesh size M6 using SCC which was then tested with a cyclic load using displacement control method based on the provisions stipulated in the Indonesian Standard SNI 7834:2012. From the test results and analysis results, it was found that the capacity and ductility of displacement in retrofit specimens increased significantly compared to specimens that were not retrofit. In addition, the decrease in stiffness in retrofit specimens was smaller than in non-retrofit specimens. As for the value of energy dissipation in fully retrofit specimens and in retrofit on the plastic hinge area is almost close. Based on these conditions, the use of wire mesh size M6 and SCC can be used as retrofit material on the column that is burdened with cyclic load. Doi: 10.28991/cej-2021-03091685 Full Text: PDF


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Han-Il Kim ◽  
Chang-Hoon Sim ◽  
Jae-Sang Park ◽  
Keejoo Lee ◽  
Joon-Tae Yoo ◽  
...  

This study is aimed at providing a numerical derivation of the shell knockdown factors of isogrid-stiffened cylinders under axial compressive loads. The present work uses two different analysis models such as the detailed model with modeling of numerous stiffeners and the equivalent model without modeling of stiffeners for isogrid-stiffened cylinders. The single perturbation load approach is used to represent the geometrically initial imperfection of the cylinder. Postbuckling analyses using the displacement control method are conducted to calculate the global buckling loads of a cylinder. The shell knockdown factor is numerically derived using the obtained global buckling loads without and with the initial imperfection of the isogrid-stiffened cylinder. The equivalent model is more efficient than the detailed model in terms of modeling time and computation time. The present knockdown factor function in terms of the shell thickness ratio (radius to thickness) for the isogrid-stiffened cylinder is significantly higher than NASA’s knockdown factor function; therefore, it is believed that the present knockdown factor function can facilitate in developing lightweight launch vehicle structures using isogrid-stiffened cylinders.


Author(s):  
Nathaniel J. Fulbright ◽  
James D. Van de Ven

The Variable Displacement Linkage Pump (VDLP) uses an adjustable planar linkage to vary the displacement of the piston. Previous work focused on dynamic modeling of the pump at fixed displacements and therefore did not account for the displacement control method or the dynamics of changing displacement. One key application of the VDLP is in pressure compensated, high-pressure water hydraulics. This paper expands on previous modeling work to include the behavior of the hydro-mechanical pressure compensation valves and the displacement control linkage. The multi-domain dynamic model captures the fluid dynamics in the pumping chambers and poppet-style control valves; the dynamics of the control valves; and the kinematics and kinetics of the two degree-of-freedom nine-bar pump linkage. The dynamic model was exercised in a simulation of the pump responding to changing demands in the output flow rate. Simulation results showed that quick response times of 100 milliseconds to a step in the load were achieved. Overshoot of the displacement is damped using an orifice in the control line. A physical prototype of the VDLP was used to validate the simulation results.


2017 ◽  
Vol 09 (07) ◽  
pp. 1750101 ◽  
Author(s):  
Judy P. Yang ◽  
Jian-Yu Chen

The traditional analysis of geometric nonlinearity is mostly based on the weak-formulated Galerkin method such as the finite element method. The element nature has limited its application as a result of numerical integration in the governing equation and quality control of deformed mesh. In the middle of 1990s, the meshfree methods have been developed and become one leading research topic in computational mechanics. Especially, the strong form collocation methods require no additional efforts to process numerical integration and impose Dirichlet boundary condition, thereby making the collocation methods computationally efficient. In the incremental–iterative process, how to accurately reflect the change in the slope of the load–deflection curve of the structure and remain numerically stable are of major concerns. Thus, we propose a strong-form formulated generalized displacement control method to analyze geometric nonlinear problems, where the radial basis collocation method is adopted. The numerical examples demonstrate the ability of the proposed method for large deformation analysis.


Author(s):  
Xuan Wu ◽  
Gaowei Liu ◽  
Xiaojie Wang ◽  
Yanwei Liu ◽  
Tao Mei

This paper presents a study of bioinspired wall-climbing robot (WCR) using spiny toes. The first part of the paper describes a design of a flexible spiny toe inspired by the features of a typical wall-climbing insect Serica orientalis Motschulsky’s tarsal system. A simple contact model of the spiny toe is proposed by considering the contact asperities as spheres. With the help of the finite element method (FEM), the stiffness matrices as well as the directional adhesive properties of the spiny toe are obtained. A single spiny toe and its array are fabricated via fast prototyping. The adhesive forces and pull-off positions of the single toe are measured with a homebuilt apparatus using displacement-control method under different compressive deformations. As for the spiny array, the effect of the dragging path on the adhesive forces is evaluated. The results show that, both the single toe and array exhibit directional adhesive features. The value of compressive deformation of the single toe influences the contacting angle, as a consequence the directional adhesive behavior is achieved. When forming an array with numerous spiny toes, the adhesive ability is strengthened, which is also affected by the random distribution of the surface asperity height. In the second part of the paper, a prototype of bioinspired WCR is designed and fabricated based on a fully understanding of the spiny contact mechanism. The robot has two feet, each of which has spring-actuated gripper. An inchworm gait is generated according to the trajectory planning of the feet. Using the proposed spiny arrays, the robot archives scaling on vertical and inverted rough surfaces, and can also transition between vertical and ceiling walls. The performance of the prototype of bioinspired WCR shows promising in developing an intelligent and maneuverable WCR system in practical applications.


2014 ◽  
Vol 1016 ◽  
pp. 44-48 ◽  
Author(s):  
Matteo Duzzi ◽  
Mirco Zaccariotto ◽  
Ugo Galvanetto

The purpose of this paper is to describe the computational procedure developed to apply the Bond-based Peridynamic Theory to nanocomposite materials. The goal is to predict the Young’s modulus as a function of the filling fraction of different nanocomposite materials with an accuracy better than that of other methods (like Halpin-Tsai, Mori-Tanaka, FEA models). A displacement control method is adopted here in order to simulate the incremental application of an external load. The constitutive law considered is linear and thus the problem can be seen as a static-linear problem. A description of the model and of the “multiscale approach” is given, supported by a comparison between experimental data and simulation results for different nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document